Constitutive models facilitate investigation into load bearing mechanisms of biological tissues and may aid attempts to engineer tissue replacements. In soft tissue models, a commonly made assumption is that collagen fibers can only bear tensile loads. Previous computational studies have demonstrated that radially aligned fibers stiffen a material in unconfined compression most by limiting lateral expansion while vertically aligned fibers buckle under the compressive loads. In this short communication, we show that in conjunction with swelling, these intuitive statements can be violated at small strains. Under such conditions, a tissue with fibers aligned parallel to the direction of load initially provides the greatest resistance to compression. The results are further put into the context of a Benninghoff architecture for articular cartilage. The predictions of this computational study demonstrate the effects of varying fiber orientations and an initial tare strain on the apparent material parameters obtained from unconfined compression tests of charged tissues.

1.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
2.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
3.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
(
8
), pp.
793
802
.
4.
Huang
,
C. -Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
799
809
.
5.
Wilson
,
W.
,
van Donkelaar
,
C.
,
van Rietbergen
,
R.
, and
Huiskes
,
R.
, 2005, “
The Role of Computational Models in the Search for the Mechanical Behavior and Damage Mechanisms of Articular Cartilage
,”
Med. Eng. Phys.
1350-4533,
27
(
10
), pp.
810
826
.
6.
Mow
,
V.
,
Sun
,
D.
,
Guo
,
X.
,
Likhitpanichkul
,
M.
, and
Lai
,
W.
, 2002, “
Fixed Negative Charges Modulate Mechanical Behaviors and Electrical Signals in Articular Cartilage under Unconfined Compression—A Triphasic Paradigm
,”
Porous Media: Theory, Experiments and Numerical Applications
,
Springer-Verlag
,
Berlin
, pp.
227
247
.
7.
Ateshian
,
G. A.
,
Chahine
,
N. O.
,
Basalo
,
I. M.
, and
Hung
,
C. T.
, 2004, “
The Correspondence Between Equilibrium Biphasic and Triphasic Material Properties in Mixture Models of Articular Cartilage
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
391
400
.
8.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
(
9
), pp.
673
682
.
9.
Li
,
L.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2002, “
The Role of Fibril Reinforcement in the Mechanical Behavior of Cartilage
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
89
96
.
10.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1195
1204
.
11.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
, 2006, “
A Composition-Based Cartilage Model for the Assessment of Compositional Changes During Cartilage Damage and Adaptation
,”
Osteoarthritis Cartilage
1063-4584,
14
(
6
), pp.
554
560
.
12.
Julkunen
,
P.
,
Jurvelin
,
J.
, and
Isaksson
,
H.
, 2010. “
Contribution of Tissue Composition and Structure to Mechanical Response of Articular Cartilage Under Different Loading Geometries and Strain Rates
,”
Biomech. Model. Mechanobiol.
1617-7959,
9
, pp.
237
245
.
13.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
, pp.
1
48
.
14.
Guterl
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2010, “
Electrostatic and Non-Electrostatic Contributions of Proteoglycans to the Compressive Equilibrium Modulus of Bovine Articular Cartilage
,”
J. Biomech.
0021-9290,
43
(
7
), pp.
1343
1350
.
15.
Chahine
,
N. O.
,
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
(
8
), pp.
1251
1261
.
16.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
, 2009, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061003
.
17.
Lima
,
E. G.
,
Bian
,
L.
,
Ng
,
K. W.
,
Mauck
,
R. L.
,
Byers
,
B. A.
,
Tuan
,
R. S.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2007, “
The Beneficial Effect of Delayed Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured With TGF-β3
,”
Osteoarthritis Cartilage
1063-4584,
15
(
9
), pp.
1025
1033
.
18.
Bian
,
L.
,
Fong
,
J. V.
,
Lima
,
E. G.
,
Stoker
,
A. M.
,
Ateshian
,
G. A.
,
Cook
,
J. L.
, and
Hung
,
C. T.
, 2010, “
Dynamic Mechanical Loading Enhances Functional Properties of Tissue-Engineered Cartilage Using Mature Canine Chondrocytes
,”
Tissue Eng. Part A
,
16
(
5
), pp.
1781
1790
.
19.
Görke
,
U. -J.
,
Günther
,
H.
,
Nagel
,
T.
, and
Wimmer
,
M. A.
, 2010, “
A Large Strain Material Model for Soft Tissues With Functionally Graded Properties
,”
ASME J. Biomech. Eng.
0148-0731,
132
(
7
), pp.
074502
.
20.
Mow
,
V. C.
, and
Guo
,
X. E.
, 2002, “
Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies
,”
Annu. Rev. Biomed. Eng.
1523-9829,
4
, pp.
175
209
.
21.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
, 2005, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
158
165
.
22.
García
,
J. J.
, and
Cortés
,
D. H.
, 2007, “
A Biphasic Viscohyperelastic Fibril-Reinforced Model for Articular Cartilage: Formulation and Comparison With Experimental Data
,”
J. Biomech.
0021-9290,
40
(
8
), pp.
1737
1744
.
23.
Roth
,
V.
, and
Mow
,
V. C.
, 1980, “
The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
62
(
7
), pp.
1102
1117
.
24.
Benninghoff
,
A.
, 1925, “
Form und BAU der Gelenkknorpel in Ihren Beziehungen zur Funktion Zweiter Teil: Der Aufbau des Gelenkknorpels in Seinen Beziehungen zur Funktion
,”
Z. Zellforsch Mikrosk. Anat.
,
2
, pp.
783
862
.
25.
Xia
,
Y.
, 2008, “
Averaged and Depth-Dependent Anisotropy of Articular Cartilage by Microscopic Imaging
,”
Semin Arthritis Rheum.
0049-0172,
37
(
5
), pp.
317
327
.
26.
Canal
,
C. E.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2008, “
Two-Dimensional Strain Fields on the Cross-Section of the Bovine Humeral Head Under Contact Loading
,”
J. Biomech.
0021-9290,
41
(
15
), pp.
3145
3151
.
27.
MSC
, 2008, Marc 2008r1–Volume A: Theory and User Information, MSC Software Corporation, 2 MacArthur Place, Santa Ana, CA 92707.
28.
Cortes
,
D. H.
,
Lake
,
S. P.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
, 2010, “
Characterizing the Mechanical Contribution of Fiber Angular Distribution in Connective Tissue: Comparison of Two Modeling Approaches
,”
Biomech. Model. Mechanobiol.
1617-7959,
9
(
5
), pp.
651
658
.
29.
Humphrey
,
J.
, and
Rajagopal
,
K.
, 2002, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
(
3
), pp.
407
430
.
30.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
405
412
.
You do not currently have access to this content.