In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at 20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, p<0.001), Ef (to 3.1±41.3% of control values, p=0.046), Em (to 6.4±8.5% of control values, p<0.0001), and an increase in k (to 2676.7±2562.0% of control values, p=0.004) were observed at day 12 of refrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures.

1.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2003, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
0021-9290,
36
(
9
), pp.
1373
1379
.
2.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
, 2003, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,”
J. Biomech.
0021-9290,
36
(
12
), pp.
1785
1796
.
3.
Li
,
L. P.
,
Korhonen
,
R. K.
,
Iivarinen
,
J.
,
Jurvelin
,
J. S.
, and
Herzog
,
W.
, 2008, “
Fluid Pressure Driven Fibril Reinforcement in Creep and Relaxation Tests of Articular Cartilage
,”
Med. Eng. Phys.
1350-4533,
30
(
2
), pp.
182
189
.
4.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
, 2001, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
0021-9290,
34
(
1
), pp.
1
12
.
5.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
4
), pp.
491
496
.
6.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
3
), pp.
340
347
.
7.
Bonassar
,
L. J.
,
Jeffries
,
K. A.
,
Paguio
,
C. G.
, and
Grodzinsky
,
A. J.
, 1995, “
Cartilage Degradation and Associated Changes in Biochemical and Electromechanical Properties
,”
Acta Orthop. Scand. Suppl.
0300-8827,
266
, pp.
38
44
.
8.
Bonassar
,
L. J.
,
Sandy
,
J. D.
,
Lark
,
M. W.
,
Plaas
,
A. H.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1997, “
Inhibition of Cartilage Degradation and Changes in Physical Properties Induced by Il-1beta and Retinoic Acid Using Matrix Metalloproteinase Inhibitors
,”
Arch. Biochem. Biophys.
0003-9861,
344
(
2
), pp.
404
412
.
9.
Garon
,
M.
,
Legare
,
A.
,
Guardo
,
R.
,
Savard
,
P.
, and
Buschmann
,
M. D.
, 2002, “
Streaming Potentials Maps Are Spatially Resolved Indicators of Amplitude, Frequency and Ionic Strength Dependant Responses of Articular Cartilage to Load
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
207
216
.
10.
Légaré
,
A.
,
Garon
,
M.
,
Guardo
,
R.
,
Savard
,
P.
,
Poole
,
A. R.
, and
Buschmann
,
M. D.
, 2002, “
Detection and Analysis of Cartilage Degeneration by Spatially Resolved Streaming Potentials
,”
J. Orthop. Res.
0736-0266,
20
(
4
), pp.
819
826
.
11.
Temple-Wong
,
M. M.
,
Bae
,
W. C.
,
Chen
,
M. Q.
,
Bugbee
,
W. D.
,
Amiel
,
D.
,
Coutts
,
R. D.
,
Lotz
,
M.
, and
Sah
,
R. L.
, 2009, “
Biomechanical, Structural, and Biochemical Indices of Degenerative and Osteoarthritic Deterioration of Adult Human Articular Cartilage of the Femoral Condyle
,”
Osteoarthritis Cartilage
1063-4584,
17
(
11
), pp.
1469
1476
.
12.
Treppo
,
S.
,
Koepp
,
H.
,
Quan
,
E. C.
,
Cole
,
A. A.
,
Kuettner
,
K. E.
, and
Grodzinsky
,
A. J.
, 2000, “
Comparison of Biomechanical and Biochemical Properties of Cartilage From Human Knee and Ankle Pairs
,”
J. Orthop. Res.
0736-0266,
18
(
5
), pp.
739
748
.
13.
Allen
,
R. T.
,
Robertson
,
C. M.
,
Pennock
,
A. T.
,
Bugbee
,
W. D.
,
Harwood
,
F. L.
,
Wong
,
V. W.
,
Chen
,
A. C.
,
Sah
,
R. L.
, and
Amiel
,
D.
, 2005, “
Analysis of Stored Osteochondral Allografts at the Time of Surgical Implantation
,”
Am. J. Sports Med.
0363-5465,
33
(
10
), pp.
1479
1484
.
14.
Ball
,
S. T.
,
Amiel
,
D.
,
Williams
,
S. K.
,
Tontz
,
W.
,
Chen
,
A. C.
,
Sah
,
R. L.
, and
Bugbee
,
W. D.
, 2004, “
The Effects of Storage on Fresh Human Osteochondral Allografts
,”
Clin. Orthop. Relat. Res.
0009-921X, (
418
), pp.
246
252
.
15.
Williams
,
S. K.
,
Amiel
,
D.
,
Ball
,
S. T.
,
Allen
,
R. T.
,
Wong
,
V. W.
,
Chen
,
A. C.
,
Sah
,
R. L.
, and
Bugbee
,
W. D.
, 2003, “
Prolonged Storage Effects on the Articular Cartilage of Fresh Human Osteochondral Allografts
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85-A
(
11
), pp.
2111
2120
.
16.
Williams
,
J. M.
,
Virdi
,
A. S.
,
Pylawka
,
T. K.
,
Edwards
,
R. B.
, III
,
Markel
,
M. D.
, and
Cole
,
B. J.
, 2005, “
Prolonged-Fresh Preservation of Intact Whole Canine Femoral Condyles for the Potential Use as Osteochondral Allografts
,”
J. Orthop. Res.
0736-0266,
23
(
4
), pp.
831
837
.
17.
Thomas
,
V. J.
,
Jimenez
,
S. A.
,
Brighton
,
C. T.
, and
Brown
,
N.
, 1984, “
Sequential Changes in the Mechanical Properties of Viable Articular Cartilage Stored in Vitro
,”
J. Orthop. Res.
0736-0266,
2
(
1
), pp.
55
60
.
18.
Charlebois
,
M.
,
McKee
,
M. D.
, and
Buschmann
,
M. D.
, 2004, “
Nonlinear Tensile Properties of Bovine Articular Cartilage and Their Variation With Age and Depth
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
129
137
.
19.
Black
,
J.
,
Shadle
,
C. A.
,
Parsons
,
J. R.
, and
Brighton
,
C. T.
, 1979, “
Articular Cartilage Preservation and Storage. II. Mechanical Indentation Testing of Viable, Stored Articular Cartilage
,”
Arthritis Rheum.
0004-3591,
22
(
10
), pp.
1102
1108
.
20.
Kennedy
,
E. A.
,
Tordonado
,
D. S.
, and
Duma
,
S. M.
, 2007, “
Effects of Freezing on the Mechanical Properties of Articular Cartilage
,”
Biomed. Sci. Instrum.
0067-8856,
43
, pp.
342
347
.
21.
Willett
,
T. L.
,
Whiteside
,
R.
,
Wild
,
P. M.
,
Wyss
,
U. P.
, and
Anastassiades
,
T.
, 2005, “
Artefacts in the Mechanical Characterization of Porcine Articular Cartilage Due to Freezing
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
219
(
1
), pp.
23
29
.
22.
Kempson
,
G. E.
,
Spivey
,
C. J.
,
Swanson
,
S. A.
, and
Freeman
,
M. A.
, 1971, “
Patterns of Cartilage Stiffness on Normal and Degenerate Human Femoral Heads
,”
J. Biomech.
0021-9290,
4
(
6
), pp.
597
609
.
23.
Kiefer
,
G. N.
,
Sundby
,
K.
,
McAllister
,
D.
,
Shrive
,
N. G.
,
Frank
,
C. B.
,
Lam
,
T.
, and
Schachar
,
N. S.
, 1989, “
The Effect of Cryopreservation on the Biomechanical Behavior of Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
7
(
4
), pp.
494
501
.
24.
Swann
,
A. C.
, 1988, The Effect of Mechanical Stress on the Stiffness of Articular Cartilage and Its Role in the Aetiology of Osteoarthrosis,Ph.D. Thesis, University of Leeds, United Kingdom.
25.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
, 1991, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
0736-0266,
9
(
3
), pp.
330
340
.
26.
Elmore
,
S. M.
,
Sokoloff
,
L.
,
Norris
,
G.
, and
Carmeci
,
P.
, 1963, “
Nature of ‘Imperfect’ Elasticity of Articular Cartilage
,”
J. Appl. Physiol.
8750-7587,
18
(
2
), pp.
393
396
.
27.
Parsons
,
J. R.
, and
Black
,
J.
, 1977, “
The Viscoelastic Shear Behavior of Normal Rabbit Articular Cartilage
,”
J. Biomech.
0021-9290,
10
(
1
), pp.
21
29
.
28.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1987, “
Cartilage Electromechanics—I. Electrokinetic Transduction and the Effects of Electrolyte Ph and Ionic Strength
,”
J. Biomech.
0021-9290,
20
(
6
), pp.
615
627
.
29.
Maroudas
,
A.
,
Muir
,
H.
, and
Wingham
,
J.
, 1969, “
The Correlation of Fixed Negative Charge With Glycosaminoglycan Content of Human Articular Cartilage
,”
Biochim. Biophys. Acta
0006-3002,
177
(
3
), pp.
492
500
.
30.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
6
16
.
31.
Maroudas
,
A.
, 1967, “
Fixed Charge Density in Articular Cartilage
,”
Seventh International Conference on Medical and Biological Engineering
, Stockholm, Sweden, p.
505
.
32.
Chen
,
A. C.
,
Nguyen
,
T. T.
, and
Sah
,
R. L.
, 1997, “
Streaming Potentials During the Confined Compression Creep Test of Normal and Proteoglycan-Depleted Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
25
(
2
), pp.
269
277
.
33.
Frank
,
E. H.
,
Grodzinsky
,
A. J.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
, 1987, “
Streaming Potentials: A Sensitive Index of Enzymatic Degradation in Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
5
(
4
), pp.
497
508
.
34.
Bora
,
F. W.
, Jr.
, and
Miller
,
G.
, 1987, “
Joint Physiology, Cartilage Metabolism, and the Etiology of Osteoarthritis
,”
Hand Clin.
0749-0712,
3
(
3
), pp.
325
336
.
35.
Langelier
,
E.
, and
Buschmann
,
M. D.
, 2003, “
Increasing Strain and Strain Rate Strengthen Transient Stiffness But Weaken the Response to Subsequent Compression for Articular Cartilage in Unconfined Compression
,”
J. Biomech.
0021-9290,
36
(
6
), pp.
853
859
.
36.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
, 2000, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
189
195
.
37.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
(
9
), pp.
673
682
.
38.
Brighton
,
C. T.
,
Shadle
,
C. A.
,
Jimenez
,
S. A.
,
Irwin
,
J. T.
,
Lane
,
J. M.
, and
Lipton
,
M.
, 1979, “
Articular Cartilage Preservation and Storage. I. Application of Tissue Culture Techniques to the Storage of Viable Articular Cartilage
,”
Arthritis Rheum.
0004-3591,
22
(
10
), pp.
1093
1101
.
39.
Fukui
,
N.
,
Purple
,
C. R.
, and
Sandell
,
L. J.
, 2001, “
Cell Biology of Osteoarthritis: The Chondrocyte’s Response to Injury
,”
Curr. Rheumatol. Rep.
,
3
(
6
), pp.
496
505
.
40.
Goldring
,
S. R.
, and
Goldring
,
M. B.
, 2004, “
The Role of Cytokines in Cartilage Matrix Degeneration in Osteoarthritis
,”
Clin. Orthop. Relat. Res.
0009-921X
427
, pp.
S27
36
.
41.
Sandell
,
L. J.
, and
Aigner
,
T.
, 2001, “
Articular Cartilage and Changes in Arthritis. An Introduction: Cell Biology of Osteoarthritis
,”
Arthritis Res.
,
3
(
2
), pp.
107
113
.
42.
Schachar
,
N. S.
,
Cucheran
,
D. J.
,
McGann
,
L. E.
,
Novak
,
K. A.
, and
Frank
,
C. B.
, 1994, “
Metabolic Activity of Bovine Articular Cartilage During Refrigerated Storage
,”
J. Orthop. Res.
0736-0266,
12
(
1
), pp.
15
20
.
43.
Pennock
,
A. T.
,
Robertson
,
C. M.
,
Wagner
,
F.
,
Harwood
,
F. L.
,
Bugbee
,
W. D.
, and
Amiel
,
D.
, 2006, “
Does Subchondral Bone Affect the Fate of Osteochondral Allografts During Storage?
,”
Am. J. Sports Med.
0363-5465,
34
(
4
), pp.
586
591
.
44.
Li
,
L.
,
Shirazi-Adl
,
A.
, and
Buschmann
,
M. D.
, 2003, “
Investigation of Mechanical Behavior of Articular Cartilage by Fibril Reinforced Poroelastic Models
,”
Biorheology
0006-355X,
40
(
1–3
), pp.
227
233
.
45.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2003, “
Strain-Rate Dependent Stiffness of Articular Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
161
168
.
46.
Harris
,
E. D.
, Jr.
, and
McCroskery
,
P. A.
, 1974, “
The Influence of Temperature and Fibril Stability on Degradation of Cartilage Collagen by Rheumatoid Synovial Collagenase
,”
N. Engl. J. Med.
0028-4793,
290
(
1
), pp.
1
6
.
47.
Li
,
Z.
,
Yasuda
,
Y.
,
Li
,
W.
,
Bogyo
,
M.
,
Katz
,
N.
,
Gordon
,
R. E.
,
Fields
,
G. B.
, and
Bromme
,
D.
, 2004, “
Regulation of Collagenase Activities of Human Cathepsins by Glycosaminoglycans
,”
J. Biol. Chem.
0021-9258,
279
(
7
), pp.
5470
5479
.
You do not currently have access to this content.