Ureteral peristaltic mechanism facilitates urine transport from the kidney to the bladder. Numerical analysis of the peristaltic flow in the ureter aims to further our understanding of the reflux phenomenon and other ureteral abnormalities. Fluid-structure interaction (FSI) plays an important role in accuracy of this approach and the arbitrary Lagrangian–Eulerian (ALE) formulation is a strong method to analyze the coupled fluid-structure interaction between the compliant wall and the surrounding fluid. This formulation, however, was not used in previous studies of peristalsis in living organisms. In the present investigation, a numerical simulation is introduced and solved through ALE formulation to perform the ureteral flow and stress analysis. The incompressible Navier–Stokes equations are used as the governing equations for the fluid, and a linear elastic model is utilized for the compliant wall. The wall stimulation is modeled by nonlinear contact analysis using a rigid contact surface since an appropriate model for simulation of ureteral peristalsis needs to contain cell-to-cell wall stimulation. In contrast to previous studies, the wall displacements are not predetermined in the presented model of this finite-length compliant tube, neither the peristalsis needs to be periodic. Moreover, the temporal changes of ureteral wall intraluminal shear stress during peristalsis are included in our study. Iterative computing of two-way coupling is used to solve the governing equations. Two phases of nonperistaltic and peristaltic transport of urine in the ureter are discussed. Results are obtained following an analysis of the effects of the ureteral wall compliance, the pressure difference between the ureteral inlet and outlet, the maximum height of the contraction wave, the contraction wave velocity, and the number of contraction waves on the ureteral outlet flow. The results indicate that the proximal part of the ureter is prone to a higher shear stress during peristalsis compared with its middle and distal parts. It is also shown that the peristalsis is more efficient as the maximum height of the contraction wave increases. Finally, it is concluded that improper function of ureteropelvic junction results in the passage of part of urine back flow even in the case of slow start-up of the peristaltic contraction wave.

1.
Fung
,
Y. C.
, 1971, “
Peristaltic Pumping: A Bioengineering Model
,”
Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis
,
S.
Boyarsky
,
G. W.
Gottschalk
,
E. A.
Tanagho
, and
P. D.
Zimskind
, eds.,
Academic
,
New York
, pp.
189
198
.
2.
Griffiths
,
D. J.
,
Constantinou
,
E. C.
,
Mortensen
,
J.
, and
Djurhuus
,
J. C.
, 1987, “
Dynamics of the Upper Urinary Tract: II. The Effect of Variations of Peristaltic Frequency and Bladder Pressure on Pyeloureteral Pressure/Flow Relations
,”
Phys. Med. Biol.
0031-9155,
32
(
7
), pp.
823
833
.
3.
Bykova
,
A. A.
, and
Regirer
,
S. A.
, 2005, “
Mathematical Models in Urinary System Mechanics
,”
J. Fluid Mech.
0022-1120,
40
(
1
), pp.
221
226
.
4.
Uehara
,
Y.
, and
Burnstock
,
G.
, 1970, “
Demonstration of “Gap Junctions” Between Smooth Muscle Cells
,”
J. Cell Biol.
0021-9525,
44
, pp.
215
217
.
5.
Eccles
,
M. R.
, 1998, “
The Role of PAX2 in Normal and Abnormal Development of the Urinary Tract
,”
Pediatr. Nephrol.
0931-041X,
12
, pp.
712
720
.
6.
Saeki
,
H.
,
Morita
,
T.
,
Nishimoto
,
T.
,
Kondo
,
S.
, and
Tsuchida
,
S.
, 1985, “
Changes in the Ureteral Peristaltic Rate and the Bolus Volume in Gradual and Rapid Urinary Flow Increase
,”
Tohoku J. Exp. Med.
0040-8727,
146
, pp.
273
275
.
7.
Zelenko
,
N.
, and
Coll
,
D.
, 2004, “
Normal Ureter Size on Unenhanced Helical CT
,”
AJR, Am. J. Roentgenol.
0361-803X,
182
, pp.
1039
1041
.
8.
Woodburne
,
R. T.
, and
Lapides
,
J.
, 1972, “
The Ureteral Lumen During Peristalsis
,”
Am. J. Anat.
0002-9106,
133
(
3
), pp.
255
258
.
9.
Kontani
,
H.
,
Ginkawa
,
M.
, and
Sakai
,
T.
, 1993, “
A Simple Method for Measurement of Ureteric Peristaltic Function In Vivo and the Effects of Drugs Acting on Ion Channels Applied From the Ureter Lumen in Anesthetized Rats
,”
Jpn. J. Pharmacol.
0021-5198,
62
, pp.
331
338
.
10.
Jørgensen
,
T. M.
, 1986, “
Pathogenetic Factors in Vesicoureteral Reflux
,”
Neurourol Urodyn
0733-2467,
5
, pp.
153
183
.
11.
Liu
,
J. X.
,
Park
,
Y. C.
,
Mah
,
S. Y.
,
Smith
,
D.
,
Woodard
,
S.
,
McGuire
,
E. J.
,
Wein
,
A.
,
Levin
,
R.
,
Miller
,
L. F.
, and
Elbadawi
,
A.
, 1991, “
Ureteral Perfusion in Normal and Chronically Obstructed Feline Models
,”
Korean J. Urol.
,
32
(
6
), pp.
980
985
.
12.
Mahoney
,
Z. X.
,
Sammut
,
B.
,
Xavier
,
R. J.
,
Cunningham
,
J.
,
Go
,
G.
,
Brim
,
K. L.
,
Stappenbeck
,
T. S.
,
Miner
,
J. H.
, and
Swat
,
W.
, 2006, “
Discs-Large Homolog 1 Regulates Smooth Muscle Orientation in the Mouse Ureter
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
52
), pp.
19872
19877
.
13.
Aragona
,
F.
,
Artibani
,
W.
,
de Caro
,
R.
,
Pizzarella
,
M.
, and
Passerini
,
G.
, 1988, “
The Morphological Basis of Ureteral Peristalsis
,”
Int. Urol. Nephrol.
0301-1623,
20
(
3
), pp.
239
250
.
14.
Melchior
,
H.
, 1975, “
Urodynamics
,”
Urol. Res.
0300-5623,
3
, pp.
51
54
.
15.
Ohlson
,
L.
, 1989, “
Morphological Dynamics of Ureteral Transport I. Shape and Volume of Constituent Urine Fractions
,”
Am. J. Physiol.
0002-9513,
256
, pp.
R19
R28
.
16.
Ohlson
,
L.
, 1989, “
Morphological Dynamics of Ureteral Transport II. Peristaltic Patterns in Relation to Flow Rate
,”
Am. J. Physiol.
0002-9513,
256
, pp.
R29
R34
.
17.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
18.
Hansen
,
I.
, and
Gregersen
,
H.
, 1999, “
Morphometry and Residual Strain in Porcine Ureter
,”
Scand. J. Urol. Nephrol.
0036-5599,
33
, pp.
10
16
.
19.
Knudsen
,
L.
,
Gregersen
,
H.
,
Eika
,
B.
, and
Frøkiær
,
J.
, 1994, “
Elastic Wall Properties and Collagen Content in the Ureter: An Experimental Study in Pigs
,”
Neurourol Urodyn
0733-2467,
13
, pp.
597
606
.
20.
Yin
,
F. C. P.
, and
Fung
,
Y. C.
, 1971, “
Mechanical Properties of Isolated Mammalian Ureteral Segments
,”
Am. J. Physiol.
0002-9513,
221
(
5
), pp.
1484
1493
.
21.
Gregersen
,
H.
, and
Kassab
,
G.
, 1996, “
Biomechanics of the Gastro-Intestinal Tract
,”
Neurogastroenterol Motil
1350-1925,
8
, pp.
277
297
.
22.
Gintz
,
D.
,
Elmabsout
,
B.
, and
Renaudeaux
,
J. P.
, 1999, “
Modelling of the Urine Flow in the Human Ureter
,”
Acad. Sci., Paris, C. R.
0001-4036,
327
, pp.
1265
1268
.
23.
Gintz
,
D.
,
Elmabsout
,
B.
, and
Renaudeaux
,
J. P.
, 2001, “
Modelling of the Human Ureteral Bolus
,”
Acad. Sci., Paris, C. R.
0001-4036,
329
, pp.
303
306
.
24.
Griffiths
,
D. J.
, and
Notschaele
,
C.
, 1983, “
The Mechanics of Urine Transport in the Upper Urinary Tract: The Dynamics of the Isolated Bolus
,”
Neurourol Urodyn
0733-2467,
2
, pp.
155
166
.
25.
Vogel
,
A.
,
Elmabsout
,
B.
, and
Gintz
,
D.
, 2004, “
Modelling of Urine Flow in a Ureteral Bolus
,”
C. R. Mec.
1631-0721,
332
, pp.
737
742
.
26.
Eytan
,
O.
,
Jaffa
,
A. J.
, and
Elad
,
D.
, 2001, “
Peristaltic Flow in a Tapered Channel: Application to Embryo Transport Within the Uterine Cavity
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
475
484
.
27.
Misra
,
J. C.
, and
Pandey
,
S. K.
, 2001, “
A Mathematical Model for Oesophageal Swallowing of a Food-Bolus
,”
Math. Comput. Modell.
0895-7177,
33
, pp.
997
1009
.
28.
Jiménez-Lozano
,
J.
, 2009, “
Peristaltic Flow With Application to Ureteral Biomechanics
,” Ph.D. thesis, Notre Dame University, Indiana.
29.
Walker
,
S. W.
, and
Shelley
,
M. J.
, 2010,
Shape Optimization of Peristaltic Pumping
,”
J. Comput. Phys.
0021-9991,
229
, pp.
1260
1291
.
30.
Teran
,
J.
,
Fauci
,
L.
, and
Shelley
,
M. J.
, 2008, “
Peristaltic Pumping and Irreversibility of a Stokesian Viscoelastic Fluid
,”
Phys. Fluids
1070-6631,
20
, p.
073101
–1–073101–
11
.
31.
Vahidi
,
B.
, and
Fatouraee
,
N.
, 2007, “
Mathematical Modeling of the Ureteral Peristaltic Flow With Fluid Structure Interaction
,”
J. Biomech.
0021-9290,
40
, p.
S223
.
32.
Bykova
,
A. A.
, and
Regirer
,
S. A.
, 1999, “
Simple Model of Peristalsis in a Myogenically-Active Tube
,”
Euromech Colloquium 389
, Book of Abstracts, Graz, Austria, pp.
68
69
.
33.
Griffiths
,
D. J.
, 1987, “
Dynamics of the Upper Urinary Tract: I. Peristaltic Flow Through a Distensible Tube of Limited Length
,”
Phys. Med. Biol.
0031-9155,
32
(
7
), pp.
813
822
.
34.
Carew
,
E. O.
, and
Pedley
,
T. J.
, 1997, “
An Active Membrane Model for Peristaltic Pumping. Pt 1. Periodic Activation Waves in an Infinite Tube
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
1
), pp.
66
76
.
You do not currently have access to this content.