The objective of the present study was to assess the influence of various clinically relevant scenarios on the strain distribution in the biomechanical surrounding of five different dental implant macrogeometries. The biomechanical environment surrounding an implant, i.e., the cortical and trabecular bone, was modeled along with the implant. These models included two different values of the study parameters including loading conditions, trabecular bone elastic modulus, cortical/trabecular bone thickness ratio, and bone loss for five implant designs. Finite element analysis was conducted on the models and strain in the bones surrounding the implant was calculated. Bone volumes having strains in four different windows of 0200με, 2001000με, 10003000με, and >3000με were measured and the effect of each biomechanical variable and their two-way interactions were statistically analyzed using the analysis of variance method. This study showed that all the parameters included in this study had an effect on the volume of bones in all strain windows, except the implant design, which affected only the 0200με and >3000με windows. The two-way interaction results showed that interactions existed between implant design and bone loss, and loading condition, bone loss in the 2001000με window, and between implant design and loading condition in the 0200με window. Within the limitations of the present methodology, it can be concluded that although some unfavorable clinical scenarios demonstrated a higher volume of bone in deleterious strain levels, a tendency toward the biomechanical equilibrium was evidenced regardless of the implant design.

1.
Albrektsson
,
T.
,
Branemark
,
P. I.
,
Hansson
,
H. A.
, and
Lindstrom
,
J.
, 1981, “
Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Inchorage in Man
,”
Acta Orthopaedica
,
52
(
2
), pp.
155
170
.
2.
Isidor
,
F.
, 1996, “
Loss of Osseointegration Caused by Occlusal Load of Oral Implants. A Clinical and Radiographic Study in Monkeys
,”
Clin. Oral Implants Res.
0905-7161,
7
(
2
), pp.
143
152
.
3.
Isidor
,
F.
, 1997, “
Histological Evaluation of Peri-Implant Bone at Implants Subjected to Occlusal Overload or Plaque Accumulation
,”
Clin. Oral Implants Res.
0905-7161,
8
(
1
), pp.
1
9
.
4.
Hoshaw
,
S. J.
,
Brunski
,
J. B.
, and
Cochran
,
G. V. B.
, 1994, “
Mechanical Loading of Branemark Implants Affects Interfacial Bone Modeling and Remodeling
,”
Int. J. Oral Maxillofac Implants
0882-2786,
9
(
3
), pp.
345
360
.
5.
Frost
,
H. M.
, 1987, “
Bone Mass and the Mechanostat: A Proposal
,”
Anat. Rec.
0003-276X,
219
(
1
), pp.
1
9
.
6.
Duyck
,
J.
,
Naert
,
I.
,
Rønold
,
H. J.
,
Ellingsen
,
J. E.
,
Oosterwyck
,
H. V.
, and
Sloten
,
J. V.
, 2001, “
The Influence of Static and Dynamic Loading on Marginal Bone Reactions Around Osseointegrated Implants: An Animal Experimental Study
,”
Clin. Oral Implants Res.
0905-7161,
12
(
3
), pp.
207
218
.
7.
Koontz
,
J. T.
,
Charras
,
G. T.
, and
Guldberg
,
R. E.
, 2001, “
A Microstructural Finite Element Simulation of Mechanically Induced Bone Formation
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
607
612
.
8.
Fujisaki
,
K.
, and
Tadano
,
S.
, 2010, “
Strain Measurement of Pure Titanium Covered With Soft Tissue Using X-Ray Diffraction
,”
ASME J. Biomech. Eng.
0148-0731,
132
(
3
), p.
031004
.
9.
Chou
,
H. -Y.
,
Muftu
,
S.
, and
Bozkaya
,
D.
, 2006, “
Biomechanical Evaluation of a Wide-Diameter Short Dental Implant for Use in Compromised Bone Quality Regions by Finite Element Method
,”
Frontiers in Biomedical Devices
,
ASME
,
Irvine, CA
, pp.
39
40
.
10.
Frost
,
H. M.
, 1994, “
Wolff’s Law and Bone’s Structural Adaptations to Mechanical Usage: An Overview for Clinicians
,”
Angle Orthod.
0003-3219,
64
(
3
), pp.
175
188
.
11.
Rekow
,
E. D.
,
Harsono
,
M.
,
Janal
,
M.
,
Thompson
,
V. P.
, and
Zhang
,
G.
, 2006, “
Factorial Analysis of Variables Influencing Stress in All-Ceramic Crowns
,”
Dent. Mater.
0109-5641,
22
(
2
), pp.
125
132
.
12.
Rafferty
,
B. T.
,
Janal
,
M. N.
,
Zavanelli
,
R. A.
,
Silva
,
N. R. F. A.
,
Rekow
,
E. D.
,
Thompson
,
V. P.
, and
Coelho
,
P. G.
, 2010, “
Design Features of a Three-Dimensional Molar Crown and Related Maximum Principal Stress. A Finite Element Model Study
,”
Dent. Mater.
0109-5641,
26
(
2
), pp.
156
163
.
13.
Albrektsson
,
T.
,
Zarb
,
G.
,
Worthington
,
P.
, and
Eriksson
,
A. R.
, 1986, “
The Long-Term Efficacy of Currently Used Dental Implants: A Review and Proposed Criteria of Success
,”
Int. J. Oral Maxillofac Implants
0882-2786,
1
(
1
), pp.
11
25
.
14.
Van Oosterwyck
,
H.
,
Duyck
,
J.
,
Vander Sloten
,
J.
,
Van der Perre
,
G.
, and
Naert
,
I.
, 2002, “
Peri-Implant Bone Tissue Strains in Cases of Dehiscence: A Finite Element Study
,”
Clin. Oral Implants Res.
0905-7161,
13
(
3
), pp.
327
333
.
15.
Pessoa
,
R. S.
,
Muraru
,
L.
,
Marcantonio-Júnior
,
E.
,
Vaz
,
L. G.
,
Sloten
,
J. V.
,
Duyck
,
J.
, and
Jaecques
,
S. V. N.
, 2010, “
Influence of Implant Connection Type on the Biomechanical Environment of Immediately Placed Implants-CT-Based Nonlinear, Three-Dimensional Finite Element Analysis
,”
Clinical Implant Dentistry and Related Research
,
12
(
3
), pp.
219
234
.
16.
Lin
,
C. -L.
,
Lin
,
Y. -H.
, and
Chang
,
S. -H.
, 2010, “
Multi-Factorial Analysis of Variables Influencing the Bone Loss of an Implant Placed in the Maxilla: Prediction Using FEA and SED Bone Remodeling Algorithm
,”
J. Biomech.
0021-9290,
43
(
4
), pp.
644
651
.
17.
Çehreli
,
M.
,
Sahin
,
S.
, and
Akça
,
K.
, 2004, “
Role of Mechanical Environment and Implant Design on Bone Tissue Differentiation: Current Knowledge and Future Contexts
,”
J. Dent.
0300-5712,
32
(
2
), pp.
123
132
.
18.
Şahin
,
S.
,
Çehreli
,
M. C.
, and
Yalçin
,
E.
, 2002, “
The Influence of Functional Forces on the Biomechanics of Implant-Supported Prostheses—A Review
,”
J. Dent.
0300-5712,
30
(
7-8
), pp.
271
282
.
19.
Kozlovsky
,
A.
,
Tal
,
H.
,
Laufer
,
B. -Z.
,
Leshem
,
R.
,
Rohrer
,
M. D.
,
Weinreb
,
M.
, and
Artzi
,
Z.
, 2007, “
Impact of Implant Overloading on the Peri-Implant Bone in Inflamed and Non-Inflamed Peri-Implant Mucosa
,”
Clin. Oral Implants Res.
0905-7161,
18
(
5
), pp.
601
610
.
20.
Sevimay
,
M.
,
Turhan
,
F.
,
Kiliçarslan
,
M. A.
, and
Eskitascioglu
,
G.
, 2005, “
Three-Dimensional Finite Element Analysis of the Effect of Different Bone Quality on Stress Distribution in an Implant-Supported Crown
,”
J. Prosthet. Dent.
0022-3913,
93
(
3
), pp.
227
234
.
21.
Teixeira
,
E. R.
,
Sato
,
Y.
,
Akagawa
,
Y.
, and
Shindoi
,
N.
, 1998, “
A Comparative Evaluation of Mandibular Finite Element Models With Different Lengths and Elements for Implant Biomechanics
,”
J. Oral Rehabil.
0305-182X,
25
(
4
), pp.
299
303
.
22.
De Smet
,
E.
,
Jaecques
,
S. V. N.
,
Wevers
,
M.
,
Jansen
,
J. A.
,
Jacobs
,
R.
,
Sloten
,
J. V.
, and
Naert
,
I. E.
, 2006, “
Effect of Controlled Early Implant Loading on Bone Healing and Bone Mass in Guinea Pigs, as Assessed by Micro-CT and Histology
,”
Eur. J. Oral Sci.
0909-8836,
114
(
3
), pp.
232
242
.
23.
Katleen
,
V.
,
Ignace
,
N.
,
Liesbet
,
G.
,
Jozef Vander
,
S.
,
Robert
,
P.
, and
Joke
,
D.
, 2007, “
Influence of Controlled Immediate Loading and Implant Design on Peri-Implant Bone Formation
,”
J. Clin. Periodontol.
0303-6979,
34
(
2
), pp.
172
181
.
24.
Frost
,
H. M.
, 1992, “
Perspectives: Bone’s Mechanical Usage Windows
,”
Bone Miner.
0169-6009,
19
(
3
), pp.
257
271
.
25.
De Smet
,
E.
,
Jaecques
,
S. V. N.
,
Jansen
,
J. J.
,
Walboomers
,
F.
,
Sloten
,
J. V.
, and
Naert
,
I. E.
, 2007, “
Effect of Constant Strain Rate, Composed of Varying Amplitude and Frequency, of Early Loading on Peri-Implant Bone (Re)modelling
,”
J. Clin. Periodontol.
0303-6979,
34
(
7
), pp.
618
624
.
26.
Bozkaya
,
D.
,
Muftu
,
S.
, and
Muftu
,
A.
, 2004, “
Evaluation of Load Transfer Characteristics of Five Different Implants in Compact Bone at Different Load Levels by Finite Elements Analysis
,”
J. Prosthet. Dent.
0022-3913,
92
(
6
), pp.
523
530
.
27.
Misch
,
C. E.
,
Suzuki
,
J. B.
,
Misch-Dietsh
,
F. M.
, and
Bidez
,
M. W.
, 2005, “
A Positive Correlation Between Occlusal Trauma and Peri-Implant Bone Loss: Literature Support
,”
Implant Dent.
1056-6163,
14
(
2
), pp.
108
116
.
28.
Bozkaya
,
D.
, and
Muftu
,
S.
, 2004, “
Efficiency Considerations for the Purely Tapered Interference Fit (TIF) Abutments Used in Dental Implants
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
4
), pp.
393
401
.
29.
Gentile
,
M. A.
,
Chuang
,
S. K.
, and
Dodson
,
T. B.
, 2005, “
Survival Estimates and Risk Factors for Failure With 6×5.7-mm Implants
,”
Int. J. Oral Maxillofac Implants
0882-2786,
20
(
6
), pp.
930
937
.
30.
Chuang
,
S. K.
,
Cai
,
T.
,
Douglass
,
C. W.
,
Wei
,
L. J.
, and
Dodson
,
T. B.
, 2005, “
Frailty Approach for the Analysis of Clustered Failure Time Observations in Dental Research
,”
J. Dent. Res.
0022-0345,
84
(
1
), pp.
54
58
.
31.
Chun-Li
,
L.
,
Jen-Chyan
,
W.
, and
Wen-Jen
,
C.
, 2008, “
Biomechanical Interactions in Tooth-Implant-Supported Fixed Partial Dentures With Variations in the Number of Splinted Teeth and Connector Type: A Finite Element Analysis
,”
Clin. Oral Implants Res.
0905-7161,
19
(
1
), pp.
107
117
.
32.
Cehreli
,
M. C.
,
Iplikcioglu
,
H.
, and
Bilir
,
O. G.
, 2002, “
The Influence of the Location of Load Transfer on Strains Around Implants Supporting Four Unit Cement-Retained Fixed Prostheses: In Vitro Evaluation of Axial Versus Off-Set Loading
,”
J. Oral Rehabil.
0305-182X,
29
(
4
), pp.
394
400
.
33.
Steigenga
,
J. T.
,
Al-Shammari
,
K. F.
,
Nociti
,
F. H.
,
Misch
,
C. E.
, and
Wang
,
H. -L.
, 2003, “
Dental Implant Design and Its Relationship to Long-Term Implant Success
,”
Implant Dent.
1056-6163,
12
(
4
), pp.
306
317
.
34.
Tada
,
S.
,
Stegaroiu
,
R.
,
Kitamura
,
E.
,
Miyakawa
,
O.
, and
Kusakari
,
H.
, 2003, “
Influence of Implant Design and Bone Quality on Stress/Strain Distribution in Bone Around Implants: A 3-Dimensional Finite Element Analysis
,”
Int. J. Oral Maxillofac Surg.
0901-5027,
18
(
3
), pp.
357
368
.
35.
van Steenberghe
,
D.
,
Lekhlom
,
U.
,
Bolender
,
C.
,
Folmer
,
T.
,
Henry
,
P.
,
Herrmann
,
I.
,
Higuchi
,
K.
,
Laney
,
W.
,
Linden
,
U.
, and
Astrand
,
P.
, 1990, “
Applicability of Osseointegrated Oral Implants in the Rehabilitation of Partial Edentulism: A Prospective Multicenter Study on 558 Fixtures
,”
Int. J. Oral Maxillofac Implants
0882-2786,
5
(
3
), pp.
272
281
.
36.
Jaffin
,
R. A.
, and
Berman
,
C. L.
, 1991, “
The Excessive Loss of Branemark Fixtures in Type-IV Bone: A 5-Year Analysis
,”
J. Periodontol.
0022-3492,
62
(
1
), pp.
2
4
.
37.
Hansson
,
S.
, 2000, “
Implant-Abutment Interface: Biomechanical Study of Flat Top Versus Conical
,”
Clinical Implant Dentistry and Related Research
,
2
(
1
), pp.
33
41
.
You do not currently have access to this content.