To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ12 is necessary to reconstruct C1212), and the application of regularization is shown to improve accuracy. Finally, the effects of noise on reconstruction quality is demonstrated and a signal-to-noise ratio (SNR) of 40dB is identified as a reasonable threshold for obtaining accurate reconstructions from experimental data. This study demonstrates that given an appropriate set of displacement fields, level of regularization, and signal strength, the transversely isotropic method can recover the relative magnitudes of all five elastic parameters without an independent measurement of stress. The quality of the reconstructions improves with increasing contrast, magnitude of deformation, and asymmetry in the distributions of material properties, indicating that elasticity imaging of cancellous bone could be a useful tool in laboratory studies to monitor the progression of damage and disease in this tissue.

References

1.
Wolff
,
J.
, 1892,
Das Gesetz der Transformation der Knochen,
A. Hirschwald, Berlin.
2.
Brown
,
T.
, and
Albert Ferguson
,
J.
, 1980. “
Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur
,”
Acta Orthop. Scand.
,
51
, pp.
429
437
.
3.
Ophir
,
J.
,
Cespedes
,
I.
,
Garra
,
B.
,
Ponnekanti
,
H.
,
Huang
,
Y.
, and
Maklad
,
N.
, 1996. “
Elastography: Ultrasonic Imaging Of Tissue Strain and Elastic Modulus In Vivo.”
Eur. J. Ultrasound
,
3
(
1
), pp.
49
70
.
4.
Gao
,
L.
,
Parker
,
K. J.
,
Lerner
,
R. M.
, and
Levinson
,
S. F.
, 1996. “
Imaging of the Elastic Properties of Tissue: A Review
,”
Ultrasound Med. Biol.
,
22
(
8
), pp.
959
977
.
5.
Bay
,
B. K.
,
Smith
,
T. S.
, and
Fyhrie
,
D. P.
, 1999. “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
,
39
(
3
), pp.
217
226
.
6.
Smith
,
T. S.
,
Bay
,
B. K.
, and
Rashid
,
M. M.
, 2002. “
Digital Volume Correlation Including Rotational Degrees of Freedom During Minimization
,”
Exp. Mech.
,
42
(
3
), pp.
272
278
.
7.
Verhulp
,
E.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2004. “
A Three-Dimensional Digital Image Correlation Technique for Strain Measurements in Microstructures
,”
J. Biomech.
,
37
(
9
), pp.
1313
320
.
8.
Liu
,
L.
, and
Morgan
,
E. F.
, 2007. “
Accuracy and Precision of Digital Volume Correlation in Quantifying Displacements and Strain in Trabecular Bone
,”
J. Biomech.
,
40
(
15
), pp.
3516
3520
.
9.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
, 1991. “
Elastography:a Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
,
13
(
2
), pp.
111
134
.
10.
Oberai
,
A. A.
,
Gokhale
,
N. H.
, and
Feijoo
,
G. R.
, 2003. “
Solution of Inverse Problems in Elasticity Imaging Using the Adjoint Method
,”
Inverse Probl.
,
19
(
2
), pp.
297
313
.
11.
Oberai
,
A. A.
,
Gokhale
,
N. H.
,
Doyley
,
M. M.
, and
Bamber
,
J. C.
, 2004. “
Evaluation of the Adjoint Equation Based Algorithm for Elasticity Imaging
,”
Phys. Med. Biol.
,
49
(
13
), pp.
2955
2974
.
12.
Barbone
,
P. E.
, and
Bamber
,
J. C.
, 2002. “
Quantitative Elasticity Imaging: What Can and Cannot be Inferred From Strain Images
,”
Phys. Med. Biol.
,
47
(
12
), pp.
2147
2164
.
13.
Barbone
,
P. E.
, and
Gokhale
,
N. H.
, 2004. “
Elastic Modulus Imaging: On the Uniqueness and Nonuniqueness of the Elastography Inverse Problem in Two Dimensions
,”
Inverse Probl.
,
20
(
1
), pp.
283
296
.
14.
Barbone
,
P. E.
, and
Oberai
,
A. A.
, 2007. “
Elastic Modulus Imaging: Some Exact Solutions of the Compressible Elastography Inverse Problem
,”
Phys. Med. Biol.
,
52
(
6
), pp.
1577
1593
.
15.
Richards
,
M. S.
, 2007. “
Quantitative Three-Dimensional Elasticity Imaging
,” PhD thesis, Biomedical Engineering, Boston University, Boston, MA.
16.
Gokhale
,
N. H.
, 2007. “
Nonlinear Elasticity Imaging Using the Adjoint Method
,” PhD thesis, Mechanical Engineering, Boston University, Boston, MA.
17.
Oberai
,
A. A.
,
Gokhale
,
N. H.
,
Goenezen
,
S.
,
Barbone
,
P. E.
,
Hall
,
T. J.
,
Sommer
,
A. M.
, and
Jiang
,
J.
, 2009. “
Linear and Nonlinear Elasticity Imaging of Soft Tissue In Vivo: Demonstration of Feasibility
,”
Phys. Med. Biol.
,
54
, pp.
1191
1207
.
18.
19.
Raghupathy
,
R.
, and
Barocas
,
V. H.
, 2010. “
Generalized Anisotropic Inverse Mechanics for Soft Tissues
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
81006
.
20.
Kroon
,
M.
, and
Holzapfel
,
G. A.
, 2009. “
Elastic Properties of Anisotropic Vascular Membranes Examined by Inverse Analysis
,”
Comput. Methods in Appl. Mech. Eng.
,
198
(
45
), pp.
3622
3632
.
21.
Liu
,
Y.
Sun
,
L. Z.
, and
Wang
,
G.
, 2005. “
Tomography-Based 3-d Anisotropic Elastography Using Boundary Measurements
,”
IEEE Trans. Med. Imaging
,
24
(
10
), pp.
1323
1333
.
22.
Lekhnitskii
,
S. G.
,
Theory of Elasticity of an Anisotropic Elastic Body
(
Holden-Day
,
San Francisco, CA
, 1963).
23.
Vogel
,
C.
, 2002, Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia.
24.
Nazarian
,
A.
, and
Muller
,
R.
, 2004. “
Time-Lapsed Microstructural Imaging of Bone Failure Behavior
,”
J. Biomech.
,
37
(
1
), pp.
55
65
.
25.
Sutton
,
M. A.,Wolters,W. J.
,
Peters
,
W. H.
,
Ranson
,
W. F.
, and
McNeill
,
S. R.
, 1983. “
Determination of Displacements Using an Improved Digital Correlation Method
,”
Image Vision Comput.
,
1
(
3
), pp.
133
139
.
26.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001. “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.
27.
Harrigan
,
T. P.
,
Jasty
,
M.
,
Mann
,
R. W.
, and
Harris
,
W. H.
, 1988. “
Limitations of the continuum Assumption in Cancellous Bone
,”
J. Biomech.
,
21
(
4
), pp.
269
275
.
28.
Kabel
,
J.
,
van Rietbergen
,
B.
,
Odgaard
,
A.
, and
Huiskes
,
R.
, 1999. “
Constitutive Relationships of Fabric, Density, and Elastic Properties in Cancellous Bone Architecture
,”
Bone
,
25
(
4
), pp.
481
486
.
29.
Gong
,
H.
,
Zhang
,
M.
,
Yeung
,
H. Y.
, and
Qin
,
L.
, 2005. “
Regional Variations in Microstructural Properties of Vertebral Trabeculae With Aging
,”
J. Bone Miner. Metab.
,
23
(
2
), pp.
174
180
.
30.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
, 1997. “
Fabric and Elastic Principal Directions of Cancellous Bone are Closely Related
,”
J. Biomech.
,
30
(
5
), pp.
487
495
.
31.
Smit
,
T. H.
,
Odgaard
,
A.
, and
Schneider
,
E.
, 1997. “
Structure and Function of Vertebral Trabecular Bone
,”
Spine
,
22
(
24
), pp.
2823
2833
.
32.
Norris
,
A. N.
, 2006. “
The Isotropic Material Closest to a Given Anisotropic Material
,”
J. Mech. Mater. Struct.
,
1
(
2
), pp.
223
238
.
33.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
, 1996. “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
(
5
), pp.
405
410
.
You do not currently have access to this content.