It has been hypothesized that mechanical risk factors may be used to predict future atherosclerotic plaque rupture. Truly predictive methods for plaque rupture and methods to identify the best predictor(s) from all the candidates are lacking in the literature. A novel combination of computational and statistical models based on serial magnetic resonance imaging (MRI) was introduced to quantify sensitivity and specificity of mechanical predictors to identify the best candidate for plaque rupture site prediction. Serial in vivo MRI data of carotid plaque from one patient was acquired with follow-up scan showing ulceration. 3D computational fluid-structure interaction (FSI) models using both baseline and follow-up data were constructed and plaque wall stress (PWS) and strain (PWSn) and flow maximum shear stress (FSS) were extracted from all 600 matched nodal points (100 points per matched slice, baseline matching follow-up) on the lumen surface for analysis. Each of the 600 points was marked “ulcer” or “nonulcer” using follow-up scan. Predictive statistical models for each of the seven combinations of PWS, PWSn, and FSS were trained using the follow-up data and applied to the baseline data to assess their sensitivity and specificity using the 600 data points for ulcer predictions. Sensitivity of prediction is defined as the proportion of the true positive outcomes that are predicted to be positive. Specificity of prediction is defined as the proportion of the true negative outcomes that are correctly predicted to be negative. Using probability 0.3 as a threshold to infer ulcer occurrence at the prediction stage, the combination of PWS and PWSn provided the best predictive accuracy with (sensitivity, specificity) = (0.97, 0.958). Sensitivity and specificity given by PWS, PWSn, and FSS individually were (0.788, 0.968), (0.515, 0.968), and (0.758, 0.928), respectively. The proposed computational-statistical process provides a novel method and a framework to assess the sensitivity and specificity of various risk indicators and offers the potential to identify the optimized predictor for plaque rupture using serial MRI with follow-up scan showing ulceration as the gold standard for method validation. While serial MRI data with actual rupture are hard to acquire, this single-case study suggests that combination of multiple predictors may provide potential improvement to existing plaque assessment schemes. With large-scale patient studies, this predictive modeling process may provide more solid ground for rupture predictor selection strategies and methods for image-based plaque vulnerability assessment.

References

1.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Yuan
,
C.
, 2009, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses. An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
,
40
, pp.
3258
3263
.
2.
Teng
,
Z.
,
Canton
,
G.
,
Yuan
,
C.
,
Ferguson
,
M.
,
Yang
,
C.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Tang
,
D.
, 2010, “
3D Critical Plaque Wall Stress Is a Better Predictor of Carotid Plaque Rupture Sites than Flow Shear Stress: An In Vivo MRI-Based 3D FSI Study
,”
ASME J. Biomech. Eng.
,
132
(
3
), pp.
031007
.
3.
Friedman
,
M. H.
,
Krams
,
R.
, and
Chandran
,
K. B.
, 2010, “
Flow Interactions with Cells and Tissues: Cardiovascular Flows and Fluid-Structure Interactions
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1178
1187
.
4.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bause
,
C. A. J.
, 2002, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
753
767
.
5.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
657
665
.
6.
Suo
,
J.
,
Oshinski
,
J. N.
, and
Giddens
,
D. P.
, 2008, “
Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence
,”
Molecular Cell Biomechanics
,
5
(
1
), pp.
9
18
.
7.
Bluestein
,
D.
,
Alemu
,
Y.
,
Avrahami
,
I.
,
Gharib
,
M.
,
Dumont
,
K.
,
Ricotta
,
J. J.
, and
Einav
,
S.
, 2008, “
Influence of Microcalcifications on Vulnerable Plaque Mechanics Using FSI Modeling
,”
J. Biomech.
,
41
(
5
), pp.
1111
1118
.
8.
Groen
,
H. C.
,
Gijsen
,
F. J.
,
van der Lugt
,
A.
,
Ferguson
,
M. S.
,
Hatsukami
,
T. S.
,
van der Steen
,
A. F.
,
Yuan
,
C.
, and
Wentzel
,
J. J.
, 2007, “
Plaque Rupture in the Carotid Artery Is Localized at the High Shear Stress Region: a Case Report
,”
Stroke
38
, pp.
2379
2381
.
9.
Underhill
,
H. R.
,
Hatsukami
,
T. S.
,
Fayad
,
Z. A.
,
Fuster
,
V.
, and
Yuan
,
C.
, 2010, “
MRI of Carotid Atherosclerosis: Clinical Implications and Future Directions
,”
Nat. Rev. Cardiol.
,
7
(
3
), pp.
165
73
.
10.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
O. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
C.
, 2004, “
3D MRI-Based Multi-Component FSI Models for Atherosclerotic Plaques a 3-D FSI model
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
947
960
.
11.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Petruccelli
,
J. D.
,
Sicard
,
G. A.
, and
Yuan
,
C.
, 2005, “
Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1789
1801
.
12.
Kaazempur-Mofrad
,
M. R.
,
Isasi
,
A. G.
,
Younis
,
H. F.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
Sukhova
,
G.
,
Lamuraglia
,
G. M.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
, 2004, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
932
946
.
13.
Li
,
Z. Y.
,
Howarth
,
S.
,
Trivedi
,
R. A.
,
U-King-Im
,
J. M.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L. Q.
, and
Gillard
,
J. H.
, 2006, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
,
39
, pp.
2611
2622
.
14.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
, 1992, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circulation Research
,
71
, pp.
850
858
.
15.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
483
497
.
16.
Lee
,
S. W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2009, “
Correlations among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), pp.
061013
.
17.
Lee
,
S. W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
,
39
(
8
), pp.
2341
2347
.
18.
Zhu
,
H.
,
Ding
,
Z.
,
Piana
,
R. N.
,
Gehrig
,
T. R.
, and
Friedman
,
M. H.
, 2009, “
Cataloguing the Geometry of the Human Coronary Arteries: A Potential Tool for Predicting Risk of Coronary Artery Disease
,”
Int. J. Cardiol.
,
135
(
1
), pp.
43
52
.
19.
Prosi
,
M.
,
Perktold
,
K.
Ding
,
Z.
, and
Friedman
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
,
37
, pp.
1767
1775
.
20.
Vengrenyuk
,
Y.
,
Carlier
,
S.
,
Xanthos
,
S.
,
Cardoso
,
L.
,
Ganatos
,
P.
,
Virmani
,
R.
,
Einav
,
S.
,
Gilchrist
,
L.
, and
Weinbaum
,
S.
, 2006, “
A Hypothesis for Vulnerable Plaque Rupture due to Stress-Induced Debonding around Cellular Microcalcifications in Thin Fibrous Caps
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
40
), pp.
14678
14683
.
21.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
,
Bach
,
R.
, and
Ku
,
D. N.
, 2009, “
3D MRI-Based Anisotropic FSI Models with Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061010
.
22.
Huang
,
H.
,
Yang
,
C.
,
Yuan
,
C.
,
Liu
,
F.
,
Canton
,
G.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
, and
Tang
,
D.
, 2008, “
Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data
,”
Molecular & Cellular Biomechanics
,
6
(
2
), pp.
337
350
.
23.
Fitzmaurice
,
G. M.
,
Laird
,
N. M.
, and
Ware
,
J. H.
, 2004,
Applied Longitudinal Analysis
,
Wiley-Interscience
,
Hoboken, NJ
.
24.
Venables
,
W. N.
, and
Ripley
,
B. D.
, 2002,
Modern Applied Statistics with S
, 4th ed.,
Springer
,
New York.
25.
Bates
,
D. M.
, and
Sarkar
,
D.
, 2007, lme4: Linear mixed-effects models using S4 classes. R package version 0.9975-12.
You do not currently have access to this content.