The perfusion of the liver microcirculation is often analyzed in terms of idealized functional units (hexagonal liver lobules) based on a porous medium approach. More elaborate research is essential to assess the validity of this approach and to provide a more adequate and quantitative characterization of the liver microcirculation. To this end, we modeled the perfusion of the liver microcirculation using an image-based three-dimensional (3D) reconstruction of human liver sinusoids and computational fluid dynamics techniques. After vascular corrosion casting, a microvascular sample (±0.134 mm3) representing three liver lobules, was dissected from a human liver vascular replica and scanned using a high resolution (2.6 μm) micro-CT scanner. Following image processing, a cube (0.15 × 0.15 × 0.15 mm3) representing a sample of intertwined and interconnected sinusoids, was isolated from the 3D reconstructed dataset to define the fluid domain. Three models were studied to simulate flow along three orthogonal directions (i.e., parallel to the central vein and in the radial and circumferential directions of the lobule). Inflow and outflow guidances were added to facilitate solution convergence, and good quality volume meshes were obtained using approximately 9 × 106 tetrahedral cells. Subsequently, three computational fluid dynamics models were generated and solved assuming Newtonian liquid properties (viscosity 3.5 mPa s). Post-processing allowed to visualize and quantify the microvascular flow characteristics, to calculate the permeability tensor and corresponding principal permeability axes, as well as the 3D porosity. The computational fluid dynamics simulations provided data on pressure differences, preferential flow pathways and wall shear stresses. Notably, the pressure difference resulting from the flow simulation parallel to the central vein (0–100 Pa) was clearly smaller than the difference from the radial (0–170 Pa) and circumferential (0–180 Pa) flow directions. This resulted in a higher permeability along the central vein direction (kd,33 = 3.64 × 10−14 m2) in comparison with the radial (kd,11 = 1.56 × 10−14 m2) and circumferential (kd,22 = 1.75 × 10−14 m2) permeabilities which were approximately equal. The mean 3D porosity was 14.3. Our data indicate that the human hepatic microcirculation is characterized by a higher permeability along the central vein direction, and an about two times lower permeability along the radial and circumferential directions of a lobule. Since the permeability coefficients depend on the flow direction, (porous medium) liver microcirculation models should take into account sinusoidal anisotropy.

References

1.
MacSween
,
R. N. M.
,
Burt
,
A. D.
,
Portmann
,
B. C.
,
Ishak
,
K.
,
Scheuer
,
P. J.
, and
Anthony
,
P. P.
, 1996,
Pathology of the Liver
,
Churchill Livingstone
,
New York
.
2.
Malarkey
,
D. E.
,
Johnson
,
K.
,
Ryan
,
L.
,
Boorman
,
G.
, and
Maronpot
,
R. R.
, 2005, “
New Insights Into Functional Aspects of Liver Morphology
,”
Toxicol. Pathol.
,
33
(
1
), pp.
27
34
.
3.
Matsumoto
,
T.
, and
Kawakami
,
M.
, 1982, “
The Unit-Concept of Hepatic Parenchyma-A Re-Examination Based on Angioarchitectural Studies
,”
Acta Patholog. Japonica
,
32
(
2
), pp.
285
314
.
4.
Matsumoto
,
T.
,
Komori
,
R.
,
Magara
,
T.
,
Ui
,
T.
,
Kawakami
,
M.
,
Tokuda
,
T.
,
Takasaki
,
S.
,
Hayashi
,
H.
,
Jo
,
K.
,
Hano
,
H.
,
Fujino
,
H.
, and
Tanaka
,
H.
, 1979, “
A Study on the Normal Structure of the Human Liver, With Special Reference to Its Angioarchitecture
,”
Jikeikai Med.
,
26
, pp.
1
40
.
5.
McCuskey
,
R. S.
, 1966, “
A Dynamic and Static Study of Hepatic Arterioles and Hepatic Sphincters
,”
Am. J. Anat.
,
119
(
3
), pp.
455
477
.
6.
McCuskey
,
R. S.
, and
Reilly
,
F. D.
, 1993, “
Hepatic Microvasculature—Dynamic Structure and Its Regulation
,”
Seminars Liver Disease
,
13
(
1
), pp.
1
12
.
7.
Teutsch
,
H. F.
, 2005, “
The Modular Microarchitecture of Human Liver
,”
Hepatology
,
42
(
2
), pp.
317
325
.
8.
Teutsch
,
H. F.
,
Schuerfeld
,
D.
, and
Groezinger
,
E.
, 1999, “
Three-Dimensional Reconstruction of Parenchymal Units in the Liver of the Rat
,”
Hepatology
,
29
(
2
), pp.
494
505
.
9.
Marieb
,
E. N.
, and
Hoehn
,
K.
, 2008,
Anatomy & Physiology
,
Pearson Education
,
San Francisco
.
10.
Dutkowski
,
P.
,
de Rougemont
,
O.
, and
Clavien
,
P. A.
, 2008, “
Machine Perfusion for ‘Marginal’ Liver Grafts
,”
Am. J. Transplant.
,
8
(
5
), pp.
917
924
.
11.
Fuller
,
B. J.
and
Lee
,
C. Y.
, 2007, “
Hypothermic Perfusion Preservation: The Future of Organ Preservation Revisited?
,”
Cryobiology
,
54
(
2
), pp.
129
145
.
12.
Monbaliu
,
D.
,
Debbaut
,
C.
,
Hillewaert
,
W.
,
Brassil
,
J.
,
Laleman
,
W.
,
Sainz-Barriga
,
M.
,
Kravitz
,
D.
,
Pirenne
,
J.
, and
Segers
,
P.
, 2011, “
Flow Competition Between Hepatic Arterial and Portal Venous Flow During Hypothermic Machine Perfusion Preservation of Porcine Livers
,” Int. J. Artificial Organs, in press.
13.
Jain
,
S.
,
Xu
,
H. Z.
,
Duncan
,
H.
,
Jones
,
J. W.
,
Zhang
,
J. X.
,
Clemens
,
M. G.
, and
Lee
,
C. Y.
, 2004, “
Ex-Vivo Study of Flow Dynamics and Endothelial Cell Structure During Extended Hypothermic Machine Perfusion Preservation of Livers
,”
Cryobiology
,
48
(
3
), pp.
322
332
.
14.
Monbaliu
,
D.
, and
Brassil
,
J.
, 2010, “
Machine Perfusion of the Liver: Past, Present and Future
,”
Curr. Opinion Organ Transplant.
,
15
(
2
), pp.
160
166
.
15.
Monbaliu
,
D.
,
Vekemans
,
K.
,
De Vos
,
R.
,
Brassil
,
J.
,
Heedfeld
,
V.
,
Qiang
,
L.
,
D’Hollander
,
M.
,
Roskams
,
T.
, and
Pirenne
,
J.
, 2007, “
Hemodynamic, Biochemical, and Morphological Characteristics During Preservation of Normal Porcine Livers by Hypothermic Machine Perfusion
,”
Transplant. Proc.
,
39
(
8
), pp.
2652
2658
.
16.
Rady
,
M. Y.
,
Verheijde
,
J. L.
, and
McGregor
,
J.
, 2006, “
Organ Donation After Circulatory Death: The Forgotten Donor?
,”
Critical Care
,
10
(
5
).
17.
t Hart
,
N. A.
,
van der Plaats
,
A.
,
Leuvenink
,
H. G. D.
,
van Goor
,
H.
,
Wiersema-Buist
,
J.
,
Verkerke
,
G. J.
,
Rakhorst
,
G.
, and
Ploeg
,
R. J.
, 2007, “
Determination of an Adequate Perfusion Pressure for Continuous Dual Vessel Hypothermic Machine Perfusion of the Rat Liver
,”
Transplant Int.
,
20
(
4
), pp.
343
352
.
18.
Fondevila
,
C.
,
Hessheimer
,
A. J.
,
Taura
,
P.
,
Sanchez
,
O.
,
Calatayud
,
D.
,
de Riva
,
N.
,
Munoz
,
J.
,
Fuster
,
J.
,
Rimola
,
A.
, and
Garcia-Valdecasas
,
J. C.
, 2010, “
Portal Hyperperfusion: Mechanism of Injury and Stimulus for Regeneration in Porcine Small-for-Size Transplantation
,”
Liver Transplant.
,
16
(
3
), pp.
364
374
.
19.
Garcea
,
G.
, and
Maddern
,
G. J.
, 2009, “
Liver Failure After Major Hepatic Resection
,”
J. Hepato-Biliary-Pancreatic Surg.
,
16
(
2
), pp.
145
155
.
20.
Tanaka
,
K.
, and
Ogura
,
Y.
, 2004, “
Small-for-size graft and small-for-size syndrome in living donor liver transplantation
,”
Yonsei Med. J.
,
45
(
6
), pp.
1089
1094
.
21.
Spannbauer
,
M. M.
,
Oleszczuk
,
A.
,
Tannapfel
,
A.
,
Bluher
,
M.
,
Pietsch
,
U. C.
,
Hengstler
,
J.
,
Donaubauer
,
B.
,
Madaj-Sterba
,
P.
,
Furll
,
M.
,
Schuhmacher
,
A.
,
Thiery
,
J.
,
Hauss
,
J. P.
, and
Schon
,
M. R.
, 2005, “
Micro- and Macrovesicular Steatotic Liver Model for Transplantation Induced by Ethanol and Protein-Deficient Diet
,”
Transplant. Proc.
,
37
(
1
), pp.
210
211
.
22.
Zhang
,
J. J.
,
Meng
,
X. K.
,
Dong
,
C.
,
Qiao
,
J. L.
,
Zhang
,
R. F.
,
Yue
,
G. Q.
, and
Zhong
,
H. Y.
, 2009, “
Development of a New Animal Model of Liver Cirrhosis in Swine
,”
Eur. Surg. Res.
,
42
(
1
), pp.
35
39
.
23.
van der Plaats
,
A.
,
‘t Hart
,
N. A.
,
Verkerke
,
G. J.
,
Leuvenink
,
H. G. D.
,
Verdonck
,
P.
,
Ploeg
,
R. J.
, and
Rakhorst
,
G.
, 2004, “
Numerical Simulation of the Hepatic Circulation
,”
Int. J. Artificial Organs
,
27
(
3
), pp.
222
230
.
24.
Debbaut
,
C.
,
Monbaliu
,
D.
,
Casteleyn
,
C.
,
Cornillie
,
P.
,
Van Loo
,
D.
,
Masschaele
,
B.
,
Pirenne
,
J.
,
Simoens
,
P.
,
Van Hoorebeke
,
L.
, and
Segers
,
P.
, 2011, “
From Vascular Corrosion Cast to Electrical Analog Model for the Study of Human Liver Hemodynamics and Perfusion
,”
IEEE Trans. Biomed. Eng.
,
58
(
1
), pp.
25
35
.
25.
Kennedy
,
A. S.
,
Kleinstreuer
,
C.
,
Basciano
,
C. A.
, and
Dezarn
,
W. A.
, 2010, “
Computer Modeling of Yttrium-90-Microsphere Transport in the Hepatic Arterial Tree to Improve Clinical Outcomes
,”
Int. J. Rad. Oncol. Biol. Phys.
,
76
(
2
), pp.
631
637
.
26.
Mescam
,
M.
,
Kretowski
,
M.
, and
Bezy-Wendling
,
J.
, 2010, “
Multiscale Model of Liver DCE-MRI Towards a Better Understanding of Tumor Complexity
,”
IEEE Trans. Med. Imaging
,
29
(
3
), pp.
699
707
.
27.
Yang
,
Y.
,
George
,
S.
,
Martin
,
D. R.
,
Tannenbaum
,
A. R.
, and
Giddens
,
D. P.
, 2006, “
3D Modeling of Patient-Specific Geometries of Portal Veins Using MR Images
,”
28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Aug. 30–Sep. 3, 2006, New York, NY.
28.
Rani
,
H. P.
,
Sheu
,
T. W. H.
,
Chang
,
T. M.
, and
Liang
,
P. C.
, 2006, “
Numerical Investigation of Non-Newtonian Microcirculatory Blood Flow in Hepatic Lobule
,”
J. Biomech.
,
39
, pp.
551
563
.
29.
Ricken
,
T.
,
Dahmen
,
U.
, and
Dirsch
,
O.
, 2010, “
A Biphasic Model for Sinusoidal Liver Perfusion Remodeling After Outflow Obstruction
,”
Biomech. Model. Mechanobiol.
,
9
(
4
), pp.
435
450
.
30.
Bonfiglio
,
A.
,
Leungchavaphongse
,
K.
,
Repetto
,
R.
, and
Siggers
,
J. H.
, 2010, “
Mathematical Modeling of the Circulation in the Liver Lobule
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111011
.
31.
Wambaugh
,
J.
, and
Shah
,
I.
, 2010, “
Simulating Microdosimetry in a Virtual Hepatic Lobule
,”
Plos Comput. Biol.
,
6
(
4
), p.
e1000756
.
32.
Shah
,
I.
, and
Wambaugh
,
J.
, 2010, “
Virtual Tissues in Toxicology
,”
J. Toxicol. Environ. Health-Part B-Crit. Rev.
,
13
(
2–4
), pp.
314
328
.
33.
Greenway
,
C. V.
, and
Stark
,
R. D.
, 1971, “
Hepatic Vascular Bed
,”
Physiol. Rev.
,
51
(
1
), pp.
23
65
.
34.
Maes
,
F.
,
Ransbeeck
,
P.
,
Van Oosterwyck
,
H.
, and
Verdonck
,
P.
, 2009, “
Modeling Fluid Flow Through Irregular Scaffolds for Perfusion Bioreactors
,”
Biotechnol. Bioeng.
,
103
(
3
), pp.
621
630
.
35.
Liakopoulos
,
A. C.
, 1965, “
Darcy’s Coefficient of Permeability as Symmetric Tensor of Second Rank
,”
Int. Assoc. Sci. Hydrol.
,
10
(
3
), pp.
41
48
.
36.
Barbee
,
J. H.
, and
Cokelet
,
G. R.
, 1971, “
The Fahraeus Effect
,”
Microvascular Res.
,
3
(
1
), pp.
6
16
.
37.
Raghunathan
,
S.
,
Evans
,
D.
, and
Sparks
,
J. L.
, 2010, “
Poroviscoelastic Modeling of Liver Biomechanical Response in Unconfined Compression
,”
Ann, Biomed, Eng
,,
38
(
5
), pp.
1789
1800
.
38.
Beezer
,
R. A.
, 2010,
A First Course in Linear Algebra
,
University of Puget Sound
,
Tacoma, Washington, USA
.
You do not currently have access to this content.