Current surgical treatments for common knee injuries do not restore the normal biomechanics. Among other factors, the abnormal biomechanics increases the susceptibility to the early onset of osteoarthritis. In pursuit of improving long term outcome, investigators must understand normal knee kinematics and corresponding joint and anterior cruciate ligament (ACL) kinetics during the activities of daily living. Our long term research goal is to measure in vivo joint motions for the ovine stifle model and later simulate these motions with a 6 degree of freedom (DOF) robot to measure the corresponding 3D kinetics of the knee and ACL-only joint. Unfortunately, the motion measurement and motion simulation technologies used for our project have associated errors. The objective of this study was to determine how motion measurement and motion recreation error affect knee and ACL-only joint kinetics by perturbing a simulated in vivo motion in each DOF and measuring the corresponding intact knee and ACL-only joint forces and moments. The normal starting position for the motion was perturbed in each degree of freedom by four levels (−0.50, −0.25, 0.25, and 0.50 mm or degrees). Only translational perturbations significantly affected the intact knee and ACL-only joint kinetics. The compression-distraction perturbation had the largest effect on intact knee forces and the anterior-posterior perturbation had the largest effect on the ACL forces. Small translational perturbations can significantly alter intact knee and ACL-only joint forces. Thus, translational motion measurement errors must be reduced to provide a more accurate representation of the intact knee and ACL kinetics. To account for the remaining motion measurement and recreation errors, an envelope of forces and moments should be reported. These force and moment ranges will provide valuable functional tissue engineering parameters (FTEPs) that can be used to design more effective ACL treatments.

References

1.
Johnson
,
D. L.
, and
Warner
,
J. J. P.
, 1993, “
Diagnosis for Anterior Cruciate Ligament Surgery
,”
Clin. Sports Med.
,
12
(
4
), pp.
671
684
.
2.
Bollen
,
S. R.
, and
Scott
,
B. W.
, 1996, “
Rupture of the Anterior Cruciate Ligament—A Quiet Epidemic?
,”
Injury
,
27
(
6
), pp.
407
409
.
3.
Arendt
,
E. A.
,
Agel
,
J.
, and
Dick
,
R.
, 1999, “
Anterior Cruciate Ligament Injury Patterns Among Collegiate Men and Women
,”
J. Athletic Train.
,
34
(
2
), pp.
86
92
.
4.
Gianotti
,
S. M.
,
Marshall
,
S. W.
, and
Hume
,
P. A.
, 2009, “
Incidence of Anterior Cruciate Ligament Injury and Other Knee Ligament Injuries: A National Population-Based Study
,”
J. Sci. Med. Sport
,
12
(
6
), pp.
622
627
.
5.
Beasley
,
L. S.
,
Weiland
,
D. E.
, and
Vidal
,
A. F.
, 2005, “
Anterior Cruciate Ligament Reconstruction: A Literature Review of the Anatomy, Biomechanics, Surgical Considerations, and Clinical Outcomes
,”
Oper. Tech. Orthop.
,
15
(
1
), pp.
5
19
.
6.
Kleipool
,
A. E. B.
,
Zijl
,
J. A. C.
, and
Willems
,
W. J.
, 1998, “
Arthroscopic Anterior Cruciate Ligament Reconstruction With Bone-Patellar Tendon-Bone Allograft or Autograft: A Prospective Study With an Average Follow Up of 4 Years
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
6
(
4
), pp.
224
230
.
7.
Gao
,
B.
, and
Zheng
,
N.
, 2010, “
Alterations in Three-Dimensional Joint Kinematics of Anterior Cruciate Ligament-Deficient and Reconstructed Knees During Walking
,”
Clin. Biomech.
,
25
(
3
), pp.
222
229
.
8.
Amis
,
A. A.
,
Bull
,
A. M. J.
, and
Lie
,
D. T. T.
, 2005, “
Biomechanics of Rotational Instability and Anatomic Anterior Cruciate Ligament Reconstruction
,”
Oper. Tech. Orthop.
,
15
(
1
), pp.
29
35
.
9.
Georgoulis
,
A. D.
,
Ristanis
,
S.
, and
Chouliaras
,
V.
, 2007, “
Tibial Rotation is Not Restored After ACL Reconstruction With a Hamstring Graft
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
89
94
.
10.
Andriacchi
,
T. P.
,
Koo
,
S.
, and
Scanlan
,
S. F.
, 2009, “
Gait Mechanics Influence Healthy Cartilage Morphology and Osteoarthritis of the Knee
,”
J. Bone Jt. Surg., Am.
91
(
1
), pp.
95
101
.
11.
Chaudhari
,
A. M. W.
,
Briant
,
P. L.
, and
Bevill
,
S. L.
, 2008, “
Knee Kinematics, Cartilage Morphology, and Osteoarthritis After ACL Injury
,”
Med. Sci. Sports Exercise
,
40
(
2
), pp.
215
222
.
12.
Fink
,
C.
,
Hoser
,
C.
, and
Hackl
,
W.
, 2001, “
Long-Term Outcome of Operative or Nonoperative Treatment of Anterior Cruciate Ligament Rupture—Is Sports Activity a Determining Variable?
,”
Int. J. Sports Med.
,
22
(
4
), pp.
304
309
.
13.
Lohmander
,
L. S.
,
Östenberg
,
A.
, and
Englund
,
M.
, 2004, “
High Prevalence of Knee Osteoarthritis, Pain, and Functional Limitations in Female Soccer Players Twelve Years After Anterior Cruciate Ligament Injury
,”
Arthritis Rheum.
,
50
(
10
), pp.
3145
3152
.
14.
Kessler
,
M. A.
,
Behrend
,
H.
, and
Henz
,
S.
, 2008, “
Function, Osteoarthritis and Activity After ACL-Rupture: 11 Years Follow-Up Results of Conservative Versus Reconstructive Treatment
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
5
), pp.
442
448
.
15.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
, 1980, “
Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee. A Biomechanical Study
,”
J. Bone Jt. Surg. Am.
,
62
(
2
), pp.
259
270
.
16.
Markolf
,
K. L.
,
Park
,
S.
, and
Jackson
,
S. R.
, 2008, “
Contributions of the Posterolateral Bundle of the Anterior Cruciate Ligament to Anterior-Posterior Knee Laxity and Ligament Forces
,”
Arthroscopy: J. Relat. Surg.
,
24
(
7
), pp.
805
809
.
17.
Kanamori
,
A.
,
Zeminski
,
J.
, and
Rudy
,
T. W.
, 2002, “
The Effect of Axial Tibial Torque on the Function of the Anterior Cruciate Ligament: A Biomechanical Study of a Simulated Pivot Shift Test
,”
Arthroscopy
,
18
(
4
), pp.
394
398
.
18.
Shelburne
,
K. B.
,
Pandy
,
M. G.
, and
Anderson
,
F. C.
, 2004, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.
19.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
, 2002, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.
20.
Fleming
,
B. C.
, and
Beynnon
,
B. D.
, 2004, “
In Vivo Measurement of Ligament/Tendon Strains and Forces: A Review
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
318
328
.
21.
Allen
,
M. J.
,
Houlton
,
J. E. F.
, and
Adams
,
S. B.
, 1998, “
The Surgical Anatomy of the Stifle Joint in Sheep
,”
Vet. Surg.
,
27
(
6
), pp.
596
605
.
22.
Radford
,
W. J. P.
,
Amis
,
A. A.
, and
Stead
,
A. C.
, 1996, “
The Ovine Stifle as a Model for Human Cruciate Ligament Surgery
,”
Vet. Comp. Orthop. Traumatol.
,
9
(
3
), pp.
134
139
.
23.
Appleyard
,
R. C.
,
Burkhardt
,
D.
, and
Ghosh
,
P.
, 2003, “
Topographical Analysis of the Structural, Biochemical and Dynamic Biomechanical Properties of Cartilage in an Ovine Model of Osteoarthritis
,”
Osteoarthritis Cartilage
,
11
(
1
), pp.
65
77
.
24.
Tapper
,
J. E.
,
Fukushima
,
S.
, and
Azuma
,
H.
, 2006, “
Dynamic In Vivo Kinematics of the Intact Ovine Stifle Joint
,”
J. Orthop. Res.
,
24
(
4
), pp.
782
792
.
25.
Korvick
,
D. L.
,
Holden
,
J. P.
, and
Grood
,
E. S.
, 1992, “
Relationships Between Patellar Tendon, Anterior Cruciate Ligament and Vertical Ground Reaction Forces During Gait: Preliminary Studies in a Quadruped
,”
ASME J. Biomed. Eng.
,
22
, pp.
99
102
.
26.
Holden
,
J. P.
,
Grood
,
E. S.
, and
Korvick
,
D. L.
, 1994, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomech.
,
27
(
5
), pp.
517
526
.
27.
Butler
,
D. L.
,
Shearn
,
J. T.
, and
Juncosa
,
N.
, 2004, “
Functional Tissue Engineering Parameters Toward Designing Repair and Replacement Strategies
,”
Clin. Orthop. Relat. Res.
,
427
, pp.
S190
S199
.
28.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
29.
Boguszewski
,
D. V.
,
Shearn
,
J. T.
, and
Wagner
,
C. T.
, 2011, “
Investigating the Effects of Anterior Tibial Translation on Anterior Knee Force in the Porcine Model: Is the Porcine Knee ACL Dependent?
,”
J. Orthop. Res.
,
29
(
5
), pp.
641
646
.
30.
D’Lima
,
D. D.
,
Patil
,
S.
, and
Steklov
,
N.
, 2005, “
The Chitranjan Ranawat Award: In Vivo Knee Forces After Total Knee Arthroplasty
.”
Clin. Orthop. Relat. Res.
,
440
, pp.
45
49
.
31.
Thambyah
,
A.
,
Pereira
,
B. P.
, and
Wyss
,
U.
, 2005, “
Estimation of Bone-on-Bone Contact Forces in the Tibiofemoral Joint During Walking
,”
Knee
,
12
(
5
), pp.
383
388
.
32.
Taylor
,
W. R.
,
Ehrig
,
R. M.
, and
Heller
,
M. O.
, 2006, “
Tibio-Femoral Joint Contact Forces in Sheep
,”
J. Biomech.
,
39
(
5
), pp.
791
798
.
33.
Blevins
,
F. T.
,
Hecker
,
A. T.
, and
Bigler
,
G. T.
, 1994, “
The Effects of Donor Age and Strain Rate on the Biomechanical Properties of Bone-Patellar Tendon-Bone Allografts
,”
Am. J. Sports Med.
,
22
(
3
), pp.
328
333
.
34.
Howard
,
R. A.
,
Rosvold
,
J. M.
, and
Darcy
,
S. P.
, 2007, “
Reproduction of In Vivo Motion Using a Parallel Robot
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
743
749
.
You do not currently have access to this content.