Coronary tortuosity (CT) would alter the local wall shear stress (WSS) and may become a risk factor for atherosclerosis. Here we performed a systematic computational study to relate CT morphological parameters to abnormal WSS, which is a predisposing factor to the formation of atherosclerotic lesions. Several idealized left coronary artery (LCA) models were created to conduct a series of morphological parametric studies, in which we concentrate on three specific morphological parameters, the center line radius (CLR), the bend angle (BA), and the length between two adjust bends (LBB). The time averaged WSS (TAWSS), the oscillatory shear index (OSI), and the time averaged WSS gradient (WSSGnd) were explored by using the computational fluid dynamics (CFD) method, in order to determine susceptible sites for the onset of early atherosclerosis. In addition, two realistic LCA models were reconstructed to further validate the finding's credibility. The CLR and LBB had great impact on the distributions of WSS-derived parameters, while the BA had minor impact on the hemodynamic of the tortuous arteries. Abnormal regions with low TAWSS (TAWSS < 0.5 Pa), high OSI (OSI > 0.1) and high WSSGnd (WSSGnd > 8) were observed at the inner wall of bend sections in the models with small CLR or small LBB. These findings were also confirmed in the realistic models. Severe CT with small CLR or LBB would lead to the formation of abnormal WSS regions at the bend sections and providing these regions with favorable conditions for the onset and/or progression of atherosclerosis.

References

1.
Lloyd-Jones
,
D.
,
Adams
,
R. J.
,
Brown
,
T. M.
,
Carnethon
,
M.
,
Dai
,
S.
,
De Simone
,
G.
,
Ferguson
,
T. B.
,
Ford
,
E.
,
Furie
,
K.
, and
Gillespie
,
C.
,
2010
, “
Heart Disease and Stroke Statistics—2010 Update: A Report from the American Heart Association
,”
Circulation
,
121
(
7
), pp.
e46
e215
.10.1161/CIRCULATIONAHA.109.192667
2.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
,
1983
, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
,
53
(
4
), pp.
502
514
.10.1161/01.RES.53.4.502
3.
Asakura
,
T.
, and
Karino
,
T.
,
1990
, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
,
66
(
4
), pp.
1045
1066
.10.1161/01.RES.66.4.1045
4.
Zhu
,
H.
,
Ding
,
Z.
,
Piana
,
R. N.
,
Gehrig
,
T. R.
, and
Friedman
,
M. H.
,
2009
, “
Cataloguing the Geometry of the Human Coronary Arteries: A Potential Tool for Predicting Risk of Coronary Artery Disease
,”
Int. J. Cardiol.
,
135
(
1
), pp.
43
52
.10.1016/j.ijcard.2008.03.087
5.
Han
,
H. C.
,
2012
, “
Twisted Blood Vessels: Symptoms, Etiology and Biomechanical Mechanisms
,”
J. Vasc. Res.
,
49
(
3
), pp.
185
197
.10.1159/000335123
6.
Li
,
Y.
,
Shen
,
C.
,
Ji
,
Y.
,
Feng
,
Y.
,
Ma
,
G.
, and
Liu
,
N.
,
2011
, “
Clinical Implication of Coronary Tortuosity in Patients With Coronary Artery Disease
,”
PloS One
,
6
(
8
), p.
e24232
.10.1371/journal.pone.0024232
7.
Qiao
,
A.
,
Guo
,
X.
,
Wu
,
S.
,
Zeng
,
Y.
, and
Xu
,
X.
,
2004
, “
Numerical Study of Nonlinear Pulsatile Flow in S-Shaped Curved Arteries
,”
Med. Eng. Phys.
,
26
(
7
), pp.
545
552
.10.1016/j.medengphy.2004.04.008
8.
Liu
,
Q.
,
Mirc
,
D.
, and
Fu
,
B. M.
,
2008
, “
Mechanical Mechanisms of Thrombosis in Intact Bent Microvessels of Rat Mesentery
,”
J. Biomech.
,
41
(
12
), pp.
2726
2734
.10.1016/j.jbiomech.2008.06.013
9.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
D'Avenio
,
G.
,
Balducci
,
A.
, and
Barbaro
,
V.
,
2005
, “
A Mathematical Description of Blood Spiral Flow in Vessels: Application to a Numerical Study of Flow in Arterial Bending
,”
J. Biomech.
,
38
(
7
), pp.
1375
1386
.10.1016/j.jbiomech.2004.06.028
10.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
,
2007
, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
,
40
(
3
), pp.
519
534
.10.1016/j.jbiomech.2006.02.017
11.
Chesnutt
,
J. K.
, and
Han
,
H.-C.
,
2011
, “
Tortuosity Triggers Platelet Activation and Thrombus Formation in Microvessels
,”
ASME J. Biomech. Eng.
,
133
(
12
), p.
121004
.10.1115/1.4005478
12.
Xie
,
X.
,
Wang
,
Y.
, and
Zhou
,
H.
,
2013
, “
Impact of Coronary Tortuosity on the Coronary Blood Flow: A 3D Computational Study
,”
J. Biomech.
,
46
(
11
), pp.
1833
1841
.10.1016/j.jbiomech.2013.05.005
13.
Cecchi
,
E.
,
Giglioli
,
C.
,
Valente
,
S.
,
Lazzeri
,
C.
,
Gensini
,
G. F.
,
Abbate
,
R.
, and
Mannini
,
L.
,
2011
, “
Role of Hemodynamic Shear Stress in Cardiovascular Disease
,”
Atherosclerosis
,
214
(
2
), pp.
249
256
.10.1016/j.atherosclerosis.2010.09.008
14.
Archie
,
J. P.
, Jr.
,
Hyun
,
S.
,
Kleinstreuer
,
C.
,
Longest
,
P.
,
Truskey
,
G. A.
, and
Buchanan
,
J.
,
2001
, “
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
,”
Crit. Rev. Biomed. Eng.
,
29
(
1
), pp.
1
64
.10.1615/CritRevBiomedEng.v29.i1.10
15.
Rikhtegar
,
F.
,
Knight
,
J. A.
,
Olgac
,
U.
,
Saur
,
S. C.
,
Poulikakos
,
D.
,
Marshall Jr
,
W.
,
Cattin
,
P. C.
,
Alkadhi
,
H
, and
Kurtcuoglu
,
V.
,
2012
, “
Choosing the Optimal Wall Shear Parameter for the Prediction of Plaque Location—A Patient-Specific Computational Study in Human Left Coronary Arteries
,”
Atherosclerosis
,
221
(
2
), pp.
432
437
.10.1016/j.atherosclerosis.2012.01.018
16.
Boutsianis
,
E.
,
Dave
,
H.
,
Frauenfelder
,
T.
,
Poulikakos
,
D.
,
Wildermuth
,
S.
,
Turina
,
M.
,
Ventikos
,
Y.
, and
Zund
,
G.
,
2004
, “
Computational Simulation of Intracoronary Flow Based on Real Coronary Geometry
,”
Eur. J. Cardiothorac. Surg.
,
26
(
2
), pp.
248
256
.10.1016/j.ejcts.2004.02.041
17.
Sakamoto
,
S.
,
Takahashi
,
S.
,
Coskun
,
A. U.
,
Papafaklis
,
M. I.
,
Takahashi
,
A.
,
Saito
,
S.
,
Stone
,
P. H.
, and
Feldman
,
C. L.
,
2013
, “
Relation of Distribution of Coronary Blood Flow Volume to Coronary Artery Dominance
,”
Am. J. Cardiol.
,
111
(
10
), pp.
1420
1424
.10.1016/j.amjcard.2013.01.290
18.
Ku
,
J. P.
,
Elkins
,
C. J.
, and
Taylor
,
C. A.
,
2005
, “
Comparison of CFD and MRI Flow and Velocities in an In Vitro Large Artery Bypass Graft Model
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
257
269
.10.1007/s10439-005-1729-7
19.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
20.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G.
,
1996
, “
A Focal Stress Gradient-Dependent Mass Transfer Mechanism for Atherogenesis in Branching Arteries
,”
Med. Eng. Phys.
,
18
(
4
), pp.
326
332
.10.1016/1350-4533(95)00045-3
21.
Caro
,
C. G.
,
2009
, “
Discovery of the Role of Wall Shear in Atherosclerosis
,”
Arterioscler., Thromb., Vasc. Biol.
,
29
(
2
), pp.
158
161
.10.1161/ATVBAHA.108.166736
22.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2004
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.10.1038/labinvest.3700215
23.
Gimbrone
,
M. A.
, and
García-Cardena
,
G.
,
2013
, “
Vascular Endothelium, Hemodynamics, and the Pathobiology of Atherosclerosis
,”
Cardiovasc. Pathol.
,
22
(
1
), pp.
9
15
.10.1016/j.carpath.2012.06.006
24.
Chaichana
,
T.
,
Sun
,
Z.
, and
Jewkes
,
J.
,
2011
, “
Computation of Hemodynamics in the Left Coronary Artery With Variable Angulations
,”
J. Biomech.
,
44
(
10
), pp.
1869
1878
.10.1016/j.jbiomech.2011.04.033
25.
Wellnhofer
,
E.
,
Osman
,
J.
,
Kertzscher
,
U.
,
Affeld
,
K.
,
Fleck
,
E.
, and
Goubergrits
,
L.
,
2010
, “
Flow Simulation Studies in Coronary Arteries—Impact of Side-Branches
,”
Atherosclerosis
,
213
(
2
), pp.
475
481
.10.1016/j.atherosclerosis.2010.09.007
26.
Torii
,
R.
,
Wood
,
N. B.
,
Hadjiloizou
,
N.
,
Dowsey
,
A. W.
,
Wright
,
A. R.
,
Hughes
,
A. D.
,
Davies
,
J.
,
Francis
,
D. P.
,
Mayet
,
J.
, and
Yang
,
G. Z.
,
2009
, “
Fluid–Structure Interaction Analysis of a Patient-Specific Right Coronary Artery With Physiological Velocity and Pressure Waveforms
,”
Commun. Numer. Methods Eng.
,
25
(
5
), pp.
565
580
.10.1002/cnm.1231
27.
Hasan
,
M.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2013
, “
Effects of Cyclic Motion on Coronary Blood Flow
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121002
.10.1115/1.4025335
You do not currently have access to this content.