In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI.

References

1.
Coronado
,
V. G.
,
Haileyesus
,
T.
,
Cheng
,
T. A.
,
Bell
,
J. M.
,
Haarbauer-Krupa
,
J.
,
Lionbarger
,
M. R.
,
Flores-Herrera
,
J.
,
McGuire
,
L. C.
, and
Gilchrist
,
J.
,
2015
, “
Trends in Sports-and Recreation-Related Traumatic Brain Injuries Treated in U.S. Emergency Departments: the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) 2001-2012
,”
J. Head Trauma Rehabil.
,
30
(
3
), pp.
185
197
.
2.
Smith
,
D. H.
, and
Meaney
,
D. F.
,
2000
, “
Axonal Damage in Traumatic Brain Injury
,”
Neuroscientist
,
6
(
6
), pp.
483
495
.
3.
Muthupillai
,
R.
,
Lomas
,
D. J.
,
Rossman
,
P. J.
, and
Greenleaf
,
J. F.
,
1995
, “
Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves
,”
Science
,
269
(
5232
), pp.
1854
1857
.
4.
Kruse
,
S. A.
,
Smith
,
J. A.
,
Lawrence
,
A. J.
,
Dresner
,
M. A.
,
Manduca
,
A. J. F. G.
,
Greenleaf
,
J. F.
, and
Ehman
,
R. L.
,
2000
, “
Tissue Characterization Using Magnetic Resonance Elastography: Preliminary Results
,”
Phys. Med. Biol.
,
45
(
6
), pp.
1579
15790
.
5.
Kruse
,
S. A.
,
Rose
,
G. H.
,
Glaser
,
K. J.
,
Manduca
,
A.
,
Felmlee
,
J. P.
,
Jack
,
C. R.
, and
Ehman
,
R. L.
,
2008
, “
Magnetic Resonance Elastography of the Brain
,”
Neuroimage
,
39
(
1
), pp.
231
237
.
6.
Sack
,
I.
,
Beierbach
,
B.
,
Hamhaber
,
U.
,
Klatt
,
D.
, and
Braun
,
J.
,
2008
, “
Non-Invasive Measurement of Brain Viscoelasticity Using Magnetic Resonance Elastography
,”
NMR Biomed.
,
21
(
3
), pp.
265
271
.
7.
Streitberger
,
K. J.
,
Wiener
,
E.
,
Hoffmann
,
J.
,
Freimann
,
F. B.
,
Klatt
,
D.
,
Braun
,
J.
,
Lin
,
K.
,
McLaughlin
,
J.
,
Sprung
,
C.
,
Klingebiel
,
R.
, and
Sack
,
I.
,
2011
, “
In Vivo Viscoelastic Properties of the Brain in Normal Pressure Hydrocephalus
,”
NMR Biomed.
,
24
(
4
), pp.
385
392
.
8.
Clayton
,
E. H.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2012
, “
Transmission, Attenuation and Reflection of Shear Waves in the Human Brain
,”
J. R. Soc. Interface
,
9
(
76
), pp.
2899
2910
.
9.
Murphy
,
M. C.
,
Huston
, III,
J.
,
Jack
, Jr.,
C. R.
,
Glaser
,
K. J.
,
Senjem
,
M. L.
,
Chen
,
J.
,
Manduca
,
A.
,
Felmlee
,
J. P.
, and
Ehman
,
R. L.
,
2013
, “
Measuring the Characteristic Topography of Brain Stiffness With Magnetic Resonance Elastography
,”
PLoS One
,
8
(
12
), p.
e81668
.
10.
Guo
,
J.
,
Hirsch
,
S.
,
Fehlner
,
A.
,
Papazoglou
,
S.
,
Scheel
,
M.
,
Braun
,
J.
, and
Sack
,
I.
,
2013
, “
Towards an Elastographic Atlas of Brain Anatomy
,”
PloS One
,
8
(
8
), p.
e71807
.
11.
Johnson
,
C. L.
,
Schwarb
,
H.
,
McGarry
,
M. D. J.
,
Anderson
,
A. T.
,
Huesmann
,
G. R.
,
Sutton
,
B. P.
, and
Cohen
,
N. J.
,
2016
, “
Viscoelasticity of Subcortical Gray Matter Structures
,”
Human Brain Mapping
,
37
(
12
), pp.
4221
4233
.
12.
Murphy
,
M. C.
,
Huston
,
J.
,
Jack
,
C. R.
,
Glaser
,
K. J.
,
Manduca
,
A.
,
Felmlee
,
J. P.
, and
Ehman
,
R. L.
,
2011
, “
Decreased Brain Stiffness in Alzheimer's Disease Determined by Magnetic Resonance Elastography
,”
J. Magn. Reson. Imaging
,
34
(
3
), pp.
494
498
.
13.
Arani
,
A.
,
Murphy
,
M. C.
,
Glaser
,
K. J.
,
Manduca
,
A.
,
Lake
,
D. S.
,
Kruse
,
S. A.
,
Jack
,
C. R.
,
Ehman
,
R. L.
, and
Huston
,
J.
,
2015
, “
Measuring the Effects of Aging and Sex on Regional Brain Stiffness With MR Elastography in Healthy Older Adults
,”
Neuroimage
,
111
, pp.
59
64
.
14.
Streitberger
,
K. J.
,
Sack
,
I.
,
Krefting
,
D.
,
Pfüller
,
C.
,
Braun
,
J.
,
Paul
,
F.
, and
Wuerfel
,
J.
,
2012
, “
Brain Viscoelasticity Alteration in Chronic-Progressive Multiple Sclerosis
,”
PloS One
,
7
(
1
), p.
e29888
.
15.
Romano
,
A.
,
Guo
,
J.
,
Prokscha
,
T.
,
Meyer
,
T.
,
Hirsch
,
S.
,
Braun
,
J.
,
Sack
,
I.
, and
Scheel
,
M.
,
2014
, “
In Vivo Waveguide Elastography: Effects of Neurodegeneration in Patients With Amyotrophic Lateral Sclerosis
,”
Magn. Reson. Med.
,
72
(
6
), pp.
1755
1761
.
16.
Cloots
,
R. J. H.
,
Van Dommelen
,
J. A. W.
,
Nyberg
,
T.
,
Kleiven
,
S.
, and
Geers
,
M. G. D.
,
2011
, “
Micromechanics of Diffuse Axonal Injury: Influence of Axonal Orientation and Anisotropy
,”
Biomech. Model Mechanobiol.
,
10
(
3
), pp.
413
422
.
17.
Giordano
,
C.
,
Cloots
,
R. J. H.
,
Van Dommelen
,
J. A. W.
, and
Kleiven
,
S.
,
2014
, “
The Influence of Anisotropy on Brain Injury Prediction
,”
J. Biomech.
,
47
(
5
), pp.
1052
1059
.
18.
Oliphant
,
T. E.
,
Manduca
,
A.
,
Ehman
,
R. L.
, and
Greenleaf
,
J. F.
,
2001
, “
Complex‐Valued Stiffness Reconstruction for Magnetic Resonance Elastography by Algebraic Inversion of the Differential Equation
,”
Magn. Reson. Med.
,
45
(
2
), pp.
299
310
.
19.
McGarry
,
M. D. J.
,
Van Houten
,
E. E. W.
,
Johnson
,
C. L.
,
Georgiadis
,
J. G.
,
Sutton
,
B. P.
,
Weaver
,
J. B.
, and
Paulsen
,
K. D.
,
2012
, “
Multiresolution MR Elastography Using Nonlinear Inversion
,”
Med. Phys.
,
39
(
10
), pp.
6388
6396
.
20.
Johnson
,
C. L.
,
McGarry
,
M. D. J.
,
Van Houten
,
E. E. W.
,
Weaver
,
J. B.
,
Paulsen
,
K. D.
,
Sutton
,
B. P.
, and
Georgiadis
,
J. G.
,
2013
, “
Magnetic Resonance Elastography of the Brain Using Multishot Spiral Readouts With Self‐Navigated Motion Correction
,”
Magn. Reson. Med.
,
70
(
2
), pp.
404
412
.
21.
Manduca
,
A.
,
Oliphant
,
T. E.
,
Dresner
,
M. A.
,
Mahowald
,
J. L.
,
Kruse
,
S. A.
,
Amromin
,
E.
,
Felmlee
,
J. P.
,
Greenleaf
,
J. F.
, and
Ehman
,
R. L.
,
2001
, “
Magnetic Resonance Elastography: Non-Invasive Mapping of Tissue Elasticity
,”
Med. Image Anal.
,
5
(
4
), pp.
237
254
.
22.
Hutson
,
M.
, and
Speed
,
C.
,
2011
,
Sports Injuries
,
Oxford University Press
, Oxford, UK.
23.
Woolsey
,
T. A.
,
Hanaway
,
J.
, and
Gado
,
M. H.
,
2013
,
The Brain Atlas: A Visual Guide to the Human Central Nervous System
,
Wiley
,
Hoboken, NJ
.
24.
Mazumder
,
M. M. G.
,
Bunt
,
S.
,
Mostayed
,
M.
,
Joldes
,
G.
,
Day
,
R.
,
Hart
,
R.
, and
Wittek
,
A.
,
2013
, “
Mechanical Properties of the Brain–Skull Interface
,”
Acta Bioeng. Biomech.
,
15
(
2
), pp.
3
11
.
25.
Steen
,
R. G.
,
Hamer
,
R. M.
, and
Lieberman
,
J. A.
,
2007
, “
Measuring Brain Volume by MR Imaging: Impact of Measurement Precision and Natural Variation on Sample Size Requirements
,”
Am. J. Neuroradiol.
,
28
(
6
), pp.
1119
1125
.
26.
Okamoto
,
R. J.
,
Clayton
,
E. H.
, and
Bayly
,
P. V.
,
2011
, “
Viscoelastic Properties of Soft Gels: Comparison of Magnetic Resonance Elastography and Dynamic Shear Testing in the Shear Wave Regime
,”
Phys. Med. Biol.
,
56
(
19
), pp.
6379
6400
.
27.
Kleiven
,
S.
, and
von Holst
,
H.
,
2002
, “
Consequences of Head Size Following Trauma to the Human Head
,”
J. Biomech.
,
35
(
2
), pp.
153
160
.
28.
Gurdjian
,
E. S.
,
Hodgson
,
V. R.
, and
Thomas
,
L. M.
,
1970
, “
Studies on Mechanical Impedance of the Human Skull: Preliminary Report
,”
J. Biomech.
,
3
(
3
), pp.
239
247
.
29.
Ginsberg
,
G.
, and
Genin
,
J.
,
1995
,
Dynamics
, Wiley, New York.
30.
Naunheim
,
R. S.
,
Bayly
,
P. V.
,
Standeven
,
J.
,
Neubauer
,
J. S.
,
Lewis
,
L. M.
, and
Genin
,
G. M.
,
2003
, “
Linear and Angular Head Accelerations During Heading of a Soccer Ball
,”
Med. Sci. Sports Exercise
,
35
(
8
), pp.
1406
1412
.
31.
Atay
,
S. M.
,
Kroenke
,
C. D.
,
Sabet
,
A.
, and
Bayly
,
P. V.
,
2008
, “
Measurement of the Dynamic Shear Modulus of Mouse Brain Tissue In Vivo by Magnetic Resonance Elastography
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021013
.
32.
Smith
,
S. M.
,
Jenkinson
,
M.
,
Woolrich
,
M. W.
,
Beckmann
,
C. F.
,
Behrens
,
T. E.
,
Johansen-Berg
,
H.
,
Bannister
,
P. R.
,
De Luca
,
M.
,
Drobnjak
,
I.
,
Flitney
,
D. E.
, and
Niazy
,
R. K.
,
2004
, “
Advances in Functional and Structural MR Image Analysis and Implementation as FSL
,”
Neuroimage
,
23
, pp.
S208
S219
.
33.
McGarry
,
M. D. J.
,
Van Houten
,
E. E. W.
,
Perrinez
,
P. R.
,
Pattison
,
A. J.
,
Weaver
,
J. B.
, and
Paulsen
,
K. D.
,
2011
, “
An Octahedral Shear Strain-Based Measure of SNR for 3D MR Elastography
,”
Phys. Med. Biol.
,
56
(
13
), pp.
N153
N164
.
34.
Scharnhorst
,
K.
,
2001
, “
Angles in Complex Vector Spaces
,”
Acta Appl. Math.
,
69
(
1
), pp.
95
103
.
35.
Wang
,
H.
,
Weaver
,
J. B.
,
Perreard
,
I. I.
,
Doyley
,
M. M.
, and
Paulsen
,
K. D.
,
2011
, “
A Three-Dimensional Quality-Guided Phase Unwrapping Method for MR Elastography
,”
Phys. Med. Biol.
,
56
(
13
), pp.
3935
3952
.
36.
Barnhill
,
E.
,
Kennedy
,
P.
,
Johnson
,
C. L.
,
Mada
,
M.
, and
Roberts
,
N.
,
2015
, “
Real‐Time 4D Phase Unwrapping Applied to Magnetic Resonance Elastography
,”
Magn. Reson. Med.
,
73
(
6
), pp.
2321
2331
.
You do not currently have access to this content.