Animal models offer a flexible experimental environment for studying atherosclerosis. The mouse is the most commonly used animal, however, the underlying hemodynamics in larger animals such as the rabbit are far closer to that of humans. The aortic arch is a vessel with complex helical flow and highly heterogeneous shear stress patterns which may influence where atherosclerotic lesions form. A better understanding of intraspecies flow variation and the impact of geometry on flow may improve our understanding of where disease forms. In this work, we use magnetic resonance angiography (MRA) and 4D phase contrast magnetic resonance imaging (PC-MRI) to image and measure blood velocity in the rabbit aortic arch. Measured flow rates from the PC-MRI were used as boundary conditions in computational fluid dynamics (CFD) models of the arches. Helical flow, cross flow index (CFI), and time-averaged wall shear stress (TAWSS) were determined from the simulated flow field. Both traditional geometric metrics and shape modes derived from statistical shape analysis were analyzed with respect to flow helicity. High CFI and low TAWSS were found to colocalize in the ascending aorta and to a lesser extent on the inner curvature of the aortic arch. The Reynolds number was linearly associated with an increase in helical flow intensity (R = 0.85, p < 0.05). Both traditional and statistical shape analyses correlated with increased helical flow symmetry. However, a stronger correlation was obtained from the statistical shape analysis demonstrating its potential for discerning the role of shape in hemodynamic studies.

References

1.
Getz
,
G. S.
, and
Reardon
,
C. A.
,
2012
, “
Animal Models of Atherosclerosis
,”
Arterioscler., Thromb., Vasc. Biol.
,
32
(
5
), p.
1104
.
2.
Weinberg
,
P. D.
, and
Ross Ethier
,
C.
,
2007
, “
Twenty-Fold Difference in Hemodynamic Wall Shear Stress Between Murine and Human Aortas
,”
J. Biomech.
,
40
(
7
), pp.
1594
1598
.
3.
Peiffer
,
V.
,
Rowland
,
E. M.
,
Cremers
,
S. G.
,
Weinberg
,
P. D.
, and
Sherwin
,
S. J.
,
2012
, “
Effect of Aortic Taper on Patterns of Blood Flow and Wall Shear Stress in Rabbits: Association With Age
,”
Atherosclerosis
,
223
(
1
), pp.
114
121
.
4.
Vincent
,
P. E.
,
Plata
,
A. M.
,
Hunt
,
A. A.
,
Weinberg
,
P. D.
, and
Sherwin
,
S. J.
,
2011
, “
Blood Flow in the Rabbit Aortic Arch and Descending Thoracic Aorta
,”
J. R. Soc. Interface
,
8
(
65
), pp.
1708
1719
.
5.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Computation in the Rabbit Aorta of a New Metric—The Transverse Wall Shear Stress—To Quantify the Multidirectional Character of Disturbed Blood Flow
,”
J. Biomech.
,
46
(
15
), pp.
2651
2658
.
6.
Menon
,
A.
,
Wendell
,
D. C.
,
Wang
,
H.
,
Eddinger
,
T. J.
,
Toth
,
J. M.
,
Dholakia
,
R. J.
,
Larsen
,
P. M.
,
Jensen
,
E. S.
, and
Ladisa
,
J. F.
, Jr.
,
2012
, “
A Coupled Experimental and Computational Approach to Quantify Deleterious Hemodynamics, Vascular Alterations, and Mechanisms of Long-Term Morbidity in Response to Aortic Coarctation
,”
J. Pharmacol. Toxicol. Methods
,
65
(
1
), pp.
18
28
.
7.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Gallo
,
D.
,
Bignardi
,
C.
, and
Rizzo
,
G.
,
2013
, “
Inflow Boundary Conditions for Image-Based Computational Hemodynamics: Impact of Idealized Versus Measured Velocity Profiles in the Human Aorta
,”
J. Biomech.
,
46
(
1
), pp.
102
109
.
8.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1993
, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
588
594
.
9.
Mohamied
,
Y.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2017
, “
Understanding the Fluid Mechanics Behind Transverse Wall Shear Stress
,”
J. Biomech.
,
50
, pp.
102
109
.
10.
Morbiducci
,
U.
,
Gallo
,
D.
,
Cristofanelli
,
S.
,
Ponzini
,
R.
,
Deriu
,
M. A.
,
Rizzo
,
G.
, and
Steinman
,
D. A.
,
2015
, “
A Rational Approach to Defining Principal Axes of Multidirectional Wall Shear Stress in Realistic Vascular Geometries, With Application to the Study of the Influence of Helical Flow on Wall Shear Stress Directionality in Aorta
,”
J. Biomech.
,
48
(
6
), pp.
899
906
.
11.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2016
, “
Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow
,”
ASME J. Biomech. Eng.
,
138
(
1
), p. 014503.
12.
Liu
,
X.
,
Pu
,
F.
,
Fan
,
Y.
,
Deng
,
X.
,
Li
,
D.
, and
Li
,
S.
,
2009
, “
A Numerical Study on the Flow of Blood and the Transport of LDL in the Human Aorta: The Physiological Significance of the Helical Flow in the Aortic Arch
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
(
1
), pp.
H163
H170
.
13.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
,
1993
, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping
,”
Circulation
,
88
(
5
), pp.
2235
2247
.
14.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
,
2007
, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
,
40
(
3
), pp.
519
534
.
15.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2011
, “
Mechanistic Insight Into the Physiological Relevance of Helical Blood Flow in the Human Aorta: An In Vivo Study
,”
Biomech. Model Mech.
,
10
(
3
), pp.
339
355
.
16.
Bruse
,
J. L.
,
McLeod
,
K.
,
Biglino
,
G.
,
Ntsinjana
,
H. N.
,
Capelli
,
C.
,
Hsia
,
T. Y.
,
Sermesant
,
M.
,
Pennec
,
X.
,
Taylor
,
A. M.
,
Schievano
,
S.
, and
Modeling of Congenital Hearts Alliance Collaborative
,
G.
,
2016
, “
A Statistical Shape Modelling Framework to Extract 3D Shape Biomarkers From Medical Imaging Data: Assessing Arch Morphology of Repaired Coarctation of the Aorta
,”
BMC Med. Imaging
,
16
(
1
), p.
40
.
17.
Nam
,
D.
,
Ni
,
C. W.
,
Rezvan
,
A.
,
Suo
,
J.
,
Budzyn
,
K.
,
Llanos
,
A.
,
Harrison
,
D. G.
,
Giddens
,
D. P.
, and
Jo
,
H.
,
2010
, “
A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation From Carotid Endothelium
,”
J. Vis. Exp.
,
40
, p. 1861.
18.
Dyverfeldt
,
P.
,
Bissell
,
M.
,
Barker
,
A. J.
,
Bolger
,
A. F.
,
Carlhall
,
C. J.
,
Ebbers
,
T.
,
Francios
,
C. J.
,
Frydrychowicz
,
A.
,
Geiger
,
J.
,
Giese
,
D.
,
Hope
,
M. D.
,
Kilner
,
P. J.
,
Kozerke
,
S.
,
Myerson
,
S.
,
Neubauer
,
S.
,
Wieben
,
O.
, and
Markl
,
M.
,
2015
, “
4D Flow Cardiovascular Magnetic Resonance Consensus Statement
,”
J. Cardiovasc. Magn. Reson.
,
17
(
1
), p.
72
.
19.
Heiberg
,
E.
,
Sjogren
,
J.
,
Ugander
,
M.
,
Carlsson
,
M.
,
Engblom
,
H.
, and
Arheden
,
H.
,
2010
, “
Design and Validation of Segment–Freely Available Software for Cardiovascular Image Analysis
,”
BMC Med. Imaging
,
10
(
1
), p.
1
.
20.
Nilsson
,
B.
, and
Heyden
,
A.
,
2003
, “
A Fast Algorithm for Level Set-Like Active Contours
,”
Pattern Recognit. Lett.
,
24
(
9–10
), pp.
1331
1337
.
21.
Trachet
,
B.
,
Renard
,
M.
,
De Santis
,
G.
,
Staelens
,
S.
,
De Backer
,
J.
,
Antiga
,
L.
,
Loeys
,
B.
, and
Segers
,
P.
,
2011
, “
An Integrated Framework to Quantitatively Link Mouse-Specific Hemodynamics to Aneurysm Formation in Angiotensin II-Infused ApoE -/- Mice
,”
Ann. Biomed. Eng.
,
39
(
9
), pp.
2430
2444
.
22.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
D'Avenio
,
G.
,
Balducci
,
A.
, and
Barbaro
,
V.
,
2005
, “
A Mathematical Description of Blood Spiral Flow in Vessels: Application to a Numerical Study of Flow in Arterial Bending
,”
J. Biomech.
,
38
(
7
), pp.
1375
1386
.
23.
Gallo
,
D.
,
Steinman
,
D. A.
,
Bijari
,
P. B.
, and
Morbiducci
,
U.
,
2012
, “
Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear
,”
J. Biomech.
,
45
(
14
), pp.
2398
2404
.
24.
Durrleman
,
S.
,
Prastawa
,
M.
,
Charon
,
N.
,
Korenberg
,
J. R.
,
Joshi
,
S.
,
Gerig
,
G.
, and
Trouve
,
A.
,
2014
, “
Morphometry of Anatomical Shape Complexes With Dense Deformations and Sparse Parameters
,”
Neuroimage
,
101
, pp.
35
49
.
25.
Kratky
,
R. G.
, and
Roach
,
M. R.
,
1984
, “
Shrinkage of Batson's and Its Relevance to Vascular Casting
,”
Atherosclerosis
,
51
(
2–3
), pp.
339
341
.
26.
Barakat
,
A. I.
,
Marini
,
R. P.
, and
Colton
,
C. K.
,
1997
, “
Measurement of Flow Rates Through Aortic Branches in the Anesthetized Rabbit
,”
Lab. Anim. Sci.
,
47
(
2
), pp.
184
189
.
27.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
,
2003
, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
347
354
.
28.
Cheng
,
Z.
,
Kidher
,
E.
,
Jarral
,
O. A.
,
O'Regan
,
D. P.
,
Wood
,
N. B.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2016
, “
Assessment of Hemodynamic Conditions in the Aorta Following Root Replacement With Composite Valve-Conduit Graft
,”
Ann. Biomed. Eng.
,
44
(
5
), pp.
1392
1404
.
29.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
De Cobelli
,
F.
,
Del Maschio
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2009
, “
In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
516
531
.
30.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
(
2
), pp.
242
250
.
31.
Van Doormaal
,
M.
,
Zhou
,
Y. Q.
,
Zhang
,
X.
,
Steinman
,
D. A.
, and
Henkelman
,
R. M.
,
2014
, “
Inputs for Subject-Specific Computational Fluid Dynamics Simulation of Blood Flow in the Mouse Aorta
,”
ASME J. Biomech. Eng.
,
136
(
10
), p.
101008
.
32.
Gallo
,
D.
,
De Santis
,
G.
,
Negri
,
F.
,
Tresoldi
,
D.
,
Ponzini
,
R.
,
Massai
,
D.
,
Deriu
,
M. A.
,
Segers
,
P.
,
Verhegghe
,
B.
,
Rizzo
,
G.
, and
Morbiducci
,
U.
,
2012
, “
On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta: Implications for Indicators of Abnormal Flow
,”
Ann. Biomed. Eng.
,
40
(
3
), pp.
729
741
.
You do not currently have access to this content.