The impact of left subclavian artery (LSA) coverage during thoracic endovascular aortic repair (TEVAR) on the circulatory system is not fully understood. Here, we coupled a single-phase non-Newtonian model with fluid–structure interaction (FSI) technique to simulate blood flow in an acute type B aortic dissection. Three-element Windkessel model was implemented to reproduce physiological pressure waves, where a new workflow was designed to determine model parameters with the absence of measured data. Simulations were carried out in three geometric models to demonstrate the consequence of TEVAR with the LSA coverage; case A: pre-TEVAR aorta; case B: post-TEVAR aorta with the disappearance of LSA; case C: post-TEVAR aorta with virtually adding LSA. Results show that the blood flow through the compressed true lumen is only 8.43%, which may lead to ischemia in related organs. After TEVAR, the wall pressure on the stented segment increases and blood flow in the supra-aortic branches and true lumen is improved. Meantime, the average deformation of the aorta is obviously reduced due to the implantation of the stent graft. After virtually adding LSA, significant changes in the distribution of blood flow and two indices based on wall shear stress are observed. Moreover, the movement of residual false lumen becomes stable, which could contribute to patient recovery. Overall, this study quantitatively evaluates the efficacy of TEVAR for acute type B aortic dissection and demonstrates that the coverage of LSA has a considerable impact on the important hemodynamic parameters.

References

1.
Gallo
,
D.
,
Lefieux
,
A.
,
Morganti
,
S.
,
Veneziani
,
A.
,
Reali
,
A.
,
Auricchio
,
F.
,
Conti
,
M.
, and
Morbiducci
,
U.
,
2016
, “
A Patient-Specific Follow Up Study of the Impact of Thoracic Endovascular Repair (TEVAR) on Aortic Anatomy and on Post-Operative Hemodynamics
,”
Comput. Fluids
,
141
, pp.
54
61
.
2.
Grabenwoger
,
M.
,
Alfonso
,
F.
,
Bachet
,
J.
,
Bonser
,
R.
,
Czerny
,
M.
,
Eggebrecht
,
H.
,
Evangelista
,
A.
,
Fattori
,
R.
,
Jakob
,
H.
,
Lonn
,
L.
,
Nienaber
,
C. A.
,
Rocchi
,
G.
,
Rousseau
,
H.
,
Thompson
,
M.
,
Weigang
,
E.
, and
Erbel
,
R.
,
2012
, “
Thoracic Endovascular Aortic Repair (TEVAR) for the Treatment of Aortic Diseases: A Position Statement From the European Association for Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in Collaboration With the European Association of Percutaneous Cardiovascular Interventions (EAPCI)
,”
Eur. Heart J.
,
33
(
13
), pp.
1558
1563
.
3.
Dake
,
M. D.
,
Miller
,
D. C.
,
Mitchell
,
R. S.
,
Semba
,
C. P.
,
Moore
,
K. A.
, and
Sakai
,
T.
,
1998
, “
The ‘First Generation’ of Endovascular Stent-Grafts for Patients With Aneurysms of the Descending Thoracic Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
116
(
5
), pp.
689
704
.
4.
Matsumura
,
J. S.
,
Lee
,
W. A.
,
Mitchell
,
R. S.
,
Farber
,
M. A.
,
Murad
,
M. H.
,
Lumsden
,
A. B.
,
Greenberg
,
R. K.
,
Safi
,
H. J.
, and
Fairman
,
R. M.
,
2009
, “
The Society for Vascular Surgery Practice Guidelines: Management of the Left Subclavian Artery With Thoracic Endovascular Aortic Repair
,”
J. Vasc. Surg.
,
50
(
5
), pp.
1155
1158
.
5.
Hausegger
,
K. A.
,
Oberwalder
,
P.
,
Tiesenhausen
,
K.
,
Tauss
,
J.
,
Stanger
,
O.
,
Schedlbauer
,
P.
,
Deutschmann
,
H.
, and
Rigler
,
B.
,
2001
, “
Intentional Left Subclavian Artery Occlusion by Thoracic Aortic Stent-Grafts Without Surgical Transposition
,”
J. Endovasc. Ther.
,
8
(
5
), pp.
472
476
.
6.
Riesenman
,
P. J.
,
Farber
,
M. A.
,
Mendes
,
R. R.
,
Marston
,
W. A.
,
Fulton
,
J. J.
, and
Keagy
,
B. A.
,
2007
, “
Coverage of the Left Subclavian Artery During Thoracic Endovascular Aortic Repair
,”
J. Vasc. Surg.
,
45
(
1
), pp.
90
95
.
7.
Cooper
,
D. G.
,
Walsh
,
S. R.
,
Sadat
,
U.
,
Noorani
,
A.
,
Hayes
,
P. D.
, and
Boyle
,
J. R.
,
2009
, “
Neurological Complications After Left Subclavian Artery Coverage During Thoracic Endovascular Aortic Repair: A Systematic Review and Meta-Analysis
,”
J. Vasc. Surg.
,
49
(
6
), pp.
1594
1601
.
8.
Waterford
,
S. D.
,
Chou
,
D.
,
Bombien
,
R.
,
Uzun
,
I.
,
Shah
,
A.
, and
Khoynezhad
,
A.
,
2016
, “
Left Subclavian Arterial Coverage and Stroke During Thoracic Aortic Endografting: A Systematic Review
,”
Ann. Thorac. Surg.
,
101
(
1
), pp.
381
389
.
9.
Qiao
,
Y.
,
Zeng
,
Y.
,
Ding
,
Y.
,
Fan
,
J.
,
Luo
,
K.
, and
Zhu
,
T.
,
2019
, “
Numerical Simulation of Two-Phase non-Newtonian Blood Flow With Fluid-Structure Interaction in Aortic Dissection
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
6
), pp.
620
630
.
10.
Kenner
,
T.
,
1989
, “
The Measurement of Blood Density and Its Meaning
,”
Basic Res. Cardiol.
,
84
(
2
), pp.
111
124
.
11.
Gijsen
,
F.
,
Allanic
,
E.
,
Van de Vosse
,
F.
, and
Janssen
,
J.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 Curved Tube
,”
J. Biomech.
,
32
(
7
), pp.
705
713
.
12.
Pirola
,
S.
,
Cheng
,
Z.
,
Jarral
,
O. A.
,
O'Regan
,
D. P.
,
Pepper
,
J. R.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2017
, “
On the Choice of Outlet Boundary Conditions for Patient-Specific Analysis of Aortic Flow Using Computational Fluid Dynamics
,”
J. Biomech.
,
60
, pp.
15
21
.
13.
Alimohammadi
,
M.
,
2015
,
Aortic Dissection: Simulation Tools for Disease Management and Understanding
,
University College London (UCL)
, London.
14.
Qiao
,
A.
,
Yin
,
W.
, and
Chu
,
B.
,
2015
, “
Numerical Simulation of Fluid-Structure Interaction in Bypassed DeBakey III Aortic Dissection
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1173
1180
.
15.
Gao
,
F.
,
Watanabe
,
M.
, and
Matsuzawa
,
T.
,
2006
, “
Stress Analysis in a Layered Aortic Arch Model Under Pulsatile Blood Flow
,”
Biomed. Eng. Online
,
5
(
1
), p.
25
.
16.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2005
, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online
,
4
(
1
), p.
64
.
17.
Alimohammadi
,
M.
,
Sherwood
,
J. M.
,
Karimpour
,
M.
,
Agu
,
O.
,
Balabani
,
S.
, and
Diaz-Zuccarini
,
V.
,
2015
, “
Aortic Dissection Simulation Models for Clinical Support: Fluid-Structure Interaction vs. Rigid Wall Models
,”
Biomed. Eng. Online
,
14
, p.
34
.
18.
Brown
,
A. G.
,
Shi
,
Y.
,
Marzo
,
A.
,
Staicu
,
C.
,
Valverde
,
I.
,
Beerbaum
,
P.
,
Lawford
,
P. V.
, and
Hose
,
D. R.
,
2012
, “
Accuracy vs. Computational Time: Translating Aortic Simulations to the Clinic
,”
J. Biomech.
,
45
(
3
), pp.
516
523
.
19.
Cheng
,
Z.
,
Wood
,
N. B.
,
Gibbs
,
R. G.
, and
Xu
,
X. Y.
,
2015
, “
Geometric and Flow Features of Type B Aortic Dissection: Initial Findings and Comparison of Medically Treated and Stented Cases
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
177
189
.
20.
Tse
,
K. M.
,
Chiu
,
P.
,
Lee
,
H. P.
, and
Ho
,
P.
,
2011
, “
Investigation of Hemodynamics in the Development of Dissecting Aneurysm Within Patient-Specific Dissecting Aneurismal Aortas Using Computational Fluid Dynamics (CFD) Simulations
,”
J. Biomech.
,
44
(
5
), pp.
827
836
.
21.
Itatani
,
K.
,
Miyaji
,
K.
,
Qian
,
Y.
,
Liu
,
J. L.
,
Miyakoshi
,
T.
,
Murakami
,
A.
,
Ono
,
M.
, and
Umezu
,
M.
,
2012
, “
Influence of Surgical Arch Reconstruction Methods on Single Ventricle Workload in the Norwood Procedure
,”
J. Thorac. Cardiovasc. Surg.
,
144
(
1
), pp.
130
138
.
22.
Van der Heiden
,
K.
,
Gijsen
,
F. J.
,
Narracott
,
A.
,
Hsiao
,
S.
,
Halliday
,
I.
,
Gunn
,
J.
,
Wentzel
,
J. J.
, and
Evans
,
P. C.
,
2013
, “
The Effects of Stenting on Shear Stress: Relevance to Endothelial Injury and Repair
,”
Cardiovasc. Res.
,
99
(
2
), pp.
269
275
.
23.
Gerdes
,
A.
,
Joubert-Hübner
,
E.
,
Esders
,
K.
, and
Sievers
,
H.-H.
,
2000
, “
Hydrodynamics of Aortic Arch Vessels During Perfusion Through the Right Subclavian Artery
,”
Ann. Thorac. Surg.
,
69
(
5
), pp.
1425
1430
.
24.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis
,”
Ann. Biomed. Eng.
,
26
(
6
), pp.
975
987
.
25.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.
26.
Karmonik
,
C.
,
Partovi
,
S.
,
Müller-Eschner
,
M.
,
Bismuth
,
J.
,
Davies
,
M. G.
,
Shah
,
D. J.
,
Loebe
,
M.
,
Böckler
,
D.
,
Lumsden
,
A. B.
, and
von Tengg-Kobligk
,
H.
,
2012
, “
Longitudinal Computational Fluid Dynamics Study of Aneurysmal Dilatation in a Chronic DeBakey Type III Aortic Dissection
,”
J. Vasc. Surg.
,
56
(
1
), pp.
260
263
.
27.
Doyle
,
B. J.
, and
Norman
,
P. E.
,
2016
, “
Computational Biomechanics in Thoracic Aortic Dissection: Today's Approaches and Tomorrow's Opportunities
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
71
83
.
28.
Karmonik
,
C.
,
Bismuth
,
J.
,
Davies
,
M. G.
,
Shah
,
D. J.
,
Younes
,
H. K.
, and
Lumsden
,
A. B.
,
2011
, “
A Computational Fluid Dynamics Study Pre- and Post-Stent Graft Placement in an Acute Type B Aortic Dissection
,”
Vasc. Endovascular Surg.
,
45
(
2
), pp.
157
164
.
29.
Menichini
,
C.
,
Cheng
,
Z.
,
Gibbs
,
R. G. J.
, and
Xu
,
X. Y.
,
2018
, “
A Computational Model for False Lumen Thrombosis in Type B Aortic Dissection Following Thoracic Endovascular Repair
,”
J. Biomech.
,
66
, pp.
36
43
.
30.
Peelukhana
,
S. V.
,
Wang
,
Y.
,
Berwick
,
Z.
,
Kratzberg
,
J.
,
Krieger
,
J.
,
Roeder
,
B.
,
Cloughs
,
R. E.
,
Hsiao
,
A.
,
Chambers
,
S.
, and
Kassab
,
G. S.
,
2017
, “
Role of Pulse Pressure and Geometry of Primary Entry Tear in Acute Type B Dissection Propagation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
592
603
.
You do not currently have access to this content.