Abstract

Wall shear stress (WSS) has been shown to be associated with myocardial infarction (MI) and progression of atherosclerosis. Wall elasticity is an important feature of hemodynamic modeling affecting WSS calculations. The objective of this study was to investigate the role of wall elasticity on WSS, and justify use of either rigid or elastic models in future studies. Digital anatomic models of the aorta and coronaries were created based on coronary computed tomography angiography (CCTA) in four patients. Hemodynamics was computed in rigid and elastic models using a finite element flow solver. WSS in five timepoints in the cardiac cycle and time averaged wall shear stress (TAWSS) were compared between the models at each 3 mm subsegment and 4 arcs in cross sections along the centerlines of coronaries. In the left main (LM), proximal left anterior descending (LAD), left circumflex (LCX), and proximal right coronary artery (RCA) of the elastic model, the mean percent radial increase 5.95 ± 1.25, 4.02 ± 0.97, 4.08 ± 0.94, and 4.84 ± 1.05%, respectively. WSS at each timepoint in the cardiac cycle had slightly different values; however, when averaged over the cardiac cycle, there were negligible differences between the models. In both the subsegments (n = 704) and subarc analysis, TAWSS in the two models were highly correlated (r = 0.99). In investigation on the effect of coronary wall elasticity on WSS in CCTA-based models, the results of this study show no significant differences in TAWSS justifying using rigid wall models for future larger studies.

References

1.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
, and
Cushman
,
M.
,
2017
, “
Heart Disease and Stroke Statistics—2017 Update
,”
Circulation
,
135
(10), e146–e603.10.1161/CIR.0000000000000485
2.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
Das
,
S. R.
,
de Ferranti
,
S.
,
Després
,
J.-P.
,
Fullerton
,
H. J.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Liu
,
S.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
,
Moy
,
C. S.
,
Muntner
,
P.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Rodriguez
,
C. J.
,
Rosamond
,
W.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Woo
,
D.
,
Yeh
,
R. W.
, and
Turner
,
M. B.
,
2016
, “
Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association
,”
Circulation
,
133
(
4
), pp.
447
454
.10.1161/CIR.0000000000000366
3.
Parikh
,
N. I.
,
Gona
,
P.
,
Larson
,
M. G.
,
Fox
,
C. S.
,
Benjamin
,
E. J.
,
Murabito
,
J. M.
,
O'Donnell
,
C. J.
,
Vasan
,
R. S.
, and
Levy
,
D.
2010
, “
Long-Term Trends in Myocardial Infarction Incidence and Case-Fatality in the National Heart, Lung, and Blood Institute's Framingham Heart Study
,”
Circulation
,
119
(9), pp.
1203
1210
.10.1161/CIRCULATIONAHA.108.825364
4.
Bittencourt
,
M. S.
,
Hulten
,
E.
,
Ghoshhajra
,
B.
,
O'Leary
,
D.
,
Christman
,
M. P.
,
Montana
,
P.
,
Truong
,
Q. A.
,
Steigner
,
M.
,
Murthy
,
V. L.
,
Rybicki
,
F. J.
,
Nasir
,
K.
,
Gowdak
,
L. H. W.
,
Hainer
,
J.
,
Brady
,
T. J.
,
Di Carli
,
M. F.
,
Hoffmann
,
U.
,
Abbara
,
S.
, and
Blankstein
,
R.
,
2014
, “
Prognostic Value of Nonobstructive and Obstructive Coronary Artery Disease Detected by Coronary Computed Tomography Angiography to Identify Cardiovascular Events
,”
Circ. Cardiovasc. Imaging
,
7
(
2
), pp.
282
291
.10.1161/CIRCIMAGING.113.001047
5.
Hadamitzky
,
M.
,
Achenbach
,
S.
,
Al-Mallah
,
M.
,
Berman
,
D.
,
Budoff
,
M.
,
Cademartiri
,
F.
,
Callister
,
T.
,
Chang
,
H.-J.
,
Cheng
,
V.
,
Chinnaiyan
,
K.
,
Chow
,
B. J. W.
,
Cury
,
R.
,
Delago
,
A.
,
Dunning
,
A.
,
Feuchtner
,
G.
,
Gomez
,
M.
,
Kaufmann
,
P.
,
Kim
,
Y.-J.
,
Leipsic
,
J.
,
Lin
,
F. Y.
,
Maffei
,
E.
,
Min
,
J. K.
,
Raff
,
G.
,
Shaw
,
L. J.
,
Villines
,
T. C.
, and
Hausleiter
,
J.
,.
2013
, “
Optimized Prognostic Score for Coronary Computed Tomographic Angiography: Results From the CONFIRM Registry (COronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry
,”
J. Am. Coll. Cardiol.
,
62
(
5
), pp.
468
476
.10.1016/j.jacc.2013.04.064
6.
Melikian
,
N.
,
De Bondt
,
P.
,
Tonino
,
P.
,
De Winter
,
O.
,
Wyffels
,
E.
,
Bartunek
,
J.
,
Heyndrickx
,
G. R.
,
Fearon
,
W. F.
,
Pijls
,
N. H. J.
,
Wijns
,
W.
, and
De Bruyne
,
B.
,
2010
, “
Fractional Flow Reserve and Myocardial Perfusion Imaging in Patients With Angiographic Multivessel Coronary Artery Disease
,”
JACC Cardiovasc. Interventions
,
3
(
3
), pp.
307
314
.10.1016/j.jcin.2009.12.010
7.
Koo
,
B.-K.
,
Erglis
,
A.
,
Doh
,
J.-H.
,
Daniels
,
D. V.
,
Jegere
,
S.
,
Kim
,
H.-S.
,
Dunning
,
A.
,
DeFrance
,
T.
,
Lansky
,
A.
,
Leipsic
,
J.
, and
Min
,
J. K.
,
2011
, “
Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms: Results From the Prospective Multicenter Discover-Flow (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noni
,”
J. Am. Coll. Cardiol.
,
58
(
19
), pp.
1989
1997
.10.1016/j.jacc.2011.06.066
8.
Choi
,
G.
,
Lee
,
J. M.
,
Kim
,
H.-J.
,
Park
,
J.-B.
,
Sankaran
,
S.
,
Otake
,
H.
,
Doh
,
J.-H.
,
Nam
,
C.-W.
,
Shin
,
E.-S.
,
Taylor
,
C. A.
, and
Koo
,
B.-K.
,
2015
, “
Coronary Artery Axial Plaque Stress and Its Relationship With Lesion Geometry Application of Computational Fluid Dynamics to Coronary CT Angiography
,”
JACC Cardiovasc. Imaging
,
8
(
10
), pp.
1156
1166
.10.1016/j.jcmg.2015.04.024
9.
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Timmins
,
L. H.
,
Binongo
,
J. N. G.
,
Golub
,
L. J.
,
Corban
,
M. T.
,
Finn
,
A. V.
,
Oshinski
,
J. N.
,
Quyyumi
,
A. A.
,
Giddens
,
D. P.
, and
Samady
,
H.
,
2012
, “
Association of Coronary Wall Shear Stress With Atherosclerotic Plaque Burden, Composition, and Distribution in Patients With Coronary Artery Disease
,”
J. Am. Heart Assoc.
,
1
(
4
), p.
e002543
.10.1161/JAHA.112.002543
10.
Stone
,
P. H.
,
Maehara
,
A.
,
Coskun
,
A. U.
,
Maynard
,
C. C.
,
Zaromytidou
,
M.
,
Siasos
,
G.
,
Andreou
,
I.
,
Fotiadis
,
D.
,
Stefanou
,
K.
,
Papafaklis
,
M.
,
Michalis
,
L.
,
Lansky
,
A. J.
,
Mintz
,
G. S.
,
Serruys
,
P. W.
,
Feldman
,
C. L.
, and
Stone
,
G. W.
,
2018
, “
Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study
,”
JACC Cardiovasc. Imaging
,
11
(
3
), pp.
462
471
.10.1016/j.jcmg.2017.01.031
11.
Lu
,
M. T.
,
Ferencik
,
M.
,
Roberts
,
R. S.
,
Lee
,
K. L.
,
Ivanov
,
A.
,
Adami
,
E.
,
Mark
,
D. B
,
Jaffer
,
F. A.
,
Leipsic
,
J. A
,
Douglas
,
P. S.
, and
Hoffmann
,
U.
,
2016
, “
Noninvasive FFR Derived From Coronary CT Angiography. Management and Outcomes in the PROMISE Trial
,”
JACC Cardiovasc. Imaging
,
10
(11), pp. 1350–1358.10.1016/j.jcmg.2016.11.024
12.
Nørgaard
,
B. L.
,
Leipsic
,
J.
,
Gaur
,
S.
,
Seneviratne
,
S.
,
Ko
,
B. S.
,
Ito
,
H.
,
Jensen
,
J. M.
,
Mauri
,
L.
,
De Bruyne
,
B.
,
Bezerra
,
H.
,
Osawa
,
K.
,
Marwan
,
M.
,
Naber
,
C.
,
Erglis
,
A.
,
Park
,
S.-J.
,
Christiansen
,
E. H.
,
Kaltoft
,
A.
,
Lassen
,
J. F.
,
Bøtker
,
H. E.
, and
Achenbach
,
S.
,
2014
, “
Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease: The NXT Trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps
,”
J. Am. Coll. Cardiol.
,
63
(
12
), pp.
1145
1155
.10.1016/j.jacc.2013.11.043
13.
Tran
,
J. S.
,
Schiavazzi
,
D. E.
,
Ramachandra
,
A. B.
,
Kahn
,
A. M.
, and
Marsden
,
A. L.
,
2016
, “
Automated Tuning for Parameter Identification and Uncertainty Quantification in Multi-Scale Coronary Simulations
,”
Comput. Fluids
,
27
(5), pp. 128–138.10.1016/j.compfluid.2016.05.015
14.
Sankaran
,
S.
,
Esmaily Moghadam
,
M.
,
Kahn
,
A. M.
,
Tseng
,
E. E.
,
Guccione
,
J. M.
, and
Marsden
,
A. L.
,
2012
, “
Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2228
2242
.10.1007/s10439-012-0579-3
15.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.10.1007/s10439-010-0083-6
16.
Lantz
,
J.
,
Renner
,
J.
, and
Karlsson
,
M.
,
2011
, “
Wall Shear Stress in a Subject Specific Human Aorta—Influence of Fluid-Structure Interaction
,”
Int. J. Appl. Mech.
,
3
(
4
), pp.
759
778
.10.1142/S1758825111001226
17.
Liu
,
Y.
,
Lai
,
Y.
,
Nagaraj
,
A.
,
Kane
,
B.
,
Hamilton
,
A.
,
Greene
,
R.
,
McPherson
,
D. D.
, and
Chandran
,
K. B.
,
2001
, “
Pulsatile Flow Simulation in Arterial Vascular Segments With Intravascular Ultrasound Images
,”
Med. Eng. Phys.
,
23
(
8
), pp.
583
595
.10.1016/S1350-4533(01)00088-1
18.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.10.1016/S0021-9290(00)00043-9
19.
Xenos
,
M.
,
Labropoulos
,
N.
,
Rambhia
,
S.
,
Alemu
,
Y.
,
Einav
,
S.
,
Tassiopoulos
,
A.
,
Sakalihasan
,
N.
, and
Bluestein
,
D.
,
2015
, “
Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
139
153
.10.1007/s10439-014-1224-0
20.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2008
, “
Fluid-Structure Interaction Modeling of a Patient-Specific Cerebral Aneurysm: Influence of Structural Modeling
,”
Comput. Mech.
,
43
(
1
), pp.
151
159
.10.1007/s00466-008-0325-8
21.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
X.
,
Kvamsdal
,
T.
,
Brekken
,
R.
, and
Isaksen
,
J. G.
,
2010
, “
A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms
,”
Comput. Mech.
,
46
(
1
), pp.
3
16
.10.1007/s00466-009-0421-4
22.
Gutierrez
,
N. G.
,
Kahn
,
A.
,
Burns
,
J. C.
, and
Marsden
,
A. L.
,
2018
, “
Computational Blood Flow Simulations in Kawasaki Disease Patients: Insight Into Coronary Artery Aneurysm Hemodynamics
,”
Global Cardiol. Sci. Pract.
,
2017
(3), e201729.10.21542/gcsp.2017.29
23.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ross Ethier
,
C.
,
2003
, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
420
429
.10.1114/1.1560631
24.
Torii
,
R.
,
Torii
,
R.
,
Keegan
,
J.
,
Wood
,
N. B.
,
Dowsey
,
A. W.
,
Hughes
,
A. D.
,
Yang
,
G. Z.
,
Firmin
,
D. N.
,
McG Thom
,
S. A.
, and
Xu
,
X. Y.
,
2009
, “
The Effect of Dynamic Vessel Motion on Haemodynamic Parameters in the Right Coronary Artery: A Combined MR and CFD Study
,”
Br. J. Radiol.
,
82
, pp. S24–S32.10.1259/bjr/62450556
25.
Meza
,
D.
,
Rubenstein
,
D. A.
, and
Yin
,
W. A.
,
2018
, “
Fluid–Structure Interaction Model of the Left Coronary Artery
,”
ASME J. Biomech. Eng.
,
140
(
12
), p.
121006
.10.1115/1.4040776
26.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
2000
, “
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
77
85
.10.1115/1.429629
27.
Malvè
,
M.
,
García
,
A.
,
Ohayon
,
J.
, and
Martínez
,
M. A.
,
2012
, “
Unsteady Blood Flow and Mass Transfer of a Human Left Coronary Artery Bifurcation: FSI vs. CFD
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
745
751
.10.1016/j.icheatmasstransfer.2012.04.009
28.
Vergallo
,
R.
,
Papafaklis
,
M. I.
,
Yonetsu
,
T.
,
Bourantas
,
C. V.
,
Andreou
,
I.
,
Wang
,
Z.
,
Fujimoto
,
J. G.
,
McNulty
,
I.
,
Lee
,
H.
,
Biasucci
,
L. M.
,
Crea
,
F.
,
Feldman
,
C. L.
,
Michalis
,
L. K.
,
Stone
,
P. H.
, and
Jang
,
I.-K.
,
2014
, “
Endothelial Shear Stress and Coronary Plaque Characteristics in Humans Combined Frequency-Domain Optical Coherence Tomography and Computational Fluid Dynamics Study
,”
Circ. Cardiovasc. Imaging
,
7
(
6
), pp.
905
911
.10.1161/CIRCIMAGING.114.001932
29.
Lee
,
J. M.
,
Choi
,
G.
,
Koo
,
B.-K.
,
Hwang
,
D.
,
Park
,
J.
,
Zhang
,
J.
,
Kim
,
K.,-J.
,
Tong
,
Y.
,
Kim
,
H. J.
,
Grady
,
L.
,
Hyung
,
J.
,
Nam
,
C., W.
,
Shin
,
E., S.
,
Cho
,
Y. S.
,
Choi
,
S., Y.
,
Chun
,
E. J.
,
Choi
,
J., H.
,
Nørgaard
,
B., L.
, and
Kim
,
H. S.
,
2018
, “
Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics
,”
JACC Cardiovasc. Imaging
. (in press).10.1016/j.jcmg.2018.01.023
30.
Chatzizisis
,
Y. S.
,
Jonas
,
M.
,
Coskun
,
A. U.
,
Beigel
,
R.
,
Stone
,
B. V.
,
Maynard
,
C.
,
Gerrity
,
R. G.
,
Daley
,
W.
,
Rogers
,
C.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2008
, “
Prediction of the Localization of High-Risk Coronary Atherosclerotic Plaques on the Basis of Low Endothelial Shear Stress-an Intravascular Ultrasound and Histopathology Natural History Study
,”
Circulation
,
117
(
8
), pp.
993
1002
.10.1161/CIRCULATIONAHA.107.695254
31.
Chatzizisis
,
Y. S.
,
Coskun
,
A. U.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2007
, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling. Molecular, Cellular, and Vascular Behavior
,”
J. Am. Coll. Cardiol.
,
49
(
25
), pp.
2379
2393
.10.1016/j.jacc.2007.02.059
32.
Wootton
,
D. M.
, and
Ku
,
D. N.
,
1999
, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
,
1
, pp.
299
329
.10.1146/annurev.bioeng.1.1.299
33.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Kinlay
,
S.
,
Clark
,
M. E.
,
Sonka
,
M.
,
Wahle
,
A.
,
Ilegbusi
,
O. J.
,
Yeghiazarians
,
Y.
,
Popma
,
J. J.
,
Orav
,
J.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
,
2003
, “
Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans: In Vivo 6-Month Follow-Up Study
,”
Circulation
,
108
(
4
), pp.
438
444
.10.1161/01.CIR.0000080882.35274.AD
34.
Maurovich-Horvat
,
P.
,
Ferencik
,
M.
,
Voros
,
S.
,
Merkely
,
B.
, and
Hoffmann
,
U.
,
2014
, “
Comprehensive Plaque Assessment by Coronary CT Angiography
,”
Nat. Rev. Cardiol.
,
11
(
7
), pp.
390
402
.10.1038/nrcardio.2014.60
35.
Lo
,
J.
,
Lu
,
M. T.
,
Ihenachor
,
E. J.
,
Wei
,
J.
,
Looby
,
S. E.
,
Fitch
,
K. V.
,
Oh
,
J.
,
Zimmerman
,
C. O.
,
Hwang
,
J.
,
Abbara
,
S.
,
Plutzky
,
J.
,
Robbins
,
G.
,
Tawakol
,
A.
,
Hoffmann
,
U.
, and
Grinspoon
,
S. K.
,
2015
, “
Effects of Statin Therapy on Coronary Artery Plaque Volume and High-Risk Plaque Morphology in HIV-Infected Patients With Subclinical Atherosclerosis: A Randomised, Double-Blind, Placebo-Controlled Trial
,”
Lancet HIV
,
2
(2), pp.
52
63
.
36.
Abbara
,
S.
,
Arbab-Zadeh
,
A.
,
Callister
,
T. Q.
,
Desai
,
M. Y.
,
Mamuya
,
W.
,
Thomson
,
L.
, and
Weigold
,
W. G.
,
2009
, “
SCCT Guidelines for Performance of Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography Guidelines Committee
,”
J. Cardiovasc. Comput. Tomogr.
,
3
(
3
), pp.
190
204
.10.1016/j.jcct.2009.03.004
37.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
38.
Wilson
,
N. M.
,
Ortiz
,
A. K.
, and
Johnson
,
A. B.
,
2013
, “
The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results
,”
ASME J. Med. Device
,
7
(
4
), p.
040923
.10.1115/1.4025983
39.
Johnson
,
K.
,
Sharma
,
P.
, and
Oshinski
,
J.
,
2008
, “
Coronary Artery Flow Measurement Using Navigator Echo Gated Phase Contrast Magnetic Resonance Velocity Mapping at 3.0 T
,”
ASME J. Biomech. Eng.
,
41
(
3
), pp.
595
602
.10.1016/j.jbiomech.2007.10.010
40.
Burattini
,
R.
,
Sipkema
,
P.
,
van Huis
,
G. A.
, and
Westerhof
,
N.
,
1985
, “
Identification of Canine Coronary Resistance and Intramyocardial Compliance on the Basis of the Waterfall Model
,”
Ann. Biomed. Eng.
,
13
(
5
), pp.
385
404
.10.1007/BF02407768
41.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-Alpha Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
42.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
43.
Esmaily Moghadam
,
M.
,
Bazilevs
,
Y.
,
Hsia
,
T. Y.
,
Vignon-Clementel
,
I. E.
, and
Marsden
,
A. L.
,
2011
, “
A Comparison of Outlet Boundary Treatments for Prevention of Backflow Divergence With Relevance to Blood Flow Simulations
,”
Comput. Mech.
,
48
(
3
), pp.
277
291
.10.1007/s00466-011-0599-0
44.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.10.1007/s00466-013-0868-1
45.
Esmaily Moghadam
,
M.
,
Vignon-Clementel
,
I. E.
,
Figliola
,
R.
, and
Marsden
,
A. L.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
,
244
, pp.
63
79
.10.1016/j.jcp.2012.07.035
46.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5685
5706
.10.1016/j.cma.2005.11.011
47.
Lu
,
X.
,
Pandit
,
A.
, and
Kassab
,
G. S.
,
2004
, “
Biaxial Incremental Homeostatic Elastic Moduli of Coronary Artery: Two-Layer Model
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
287
(
4
), pp.
H1663
H1669
.10.1152/ajpheart.00226.2004
48.
Hozapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
289
, pp.
2048
2058
.10.1152/ajpheart.00934.2004
49.
Tran
,
J.
,
Vedula
,
V.
,
Baeumler
,
K.
, and
Marsden
,
A. L.
,
2018
, “
A Comparison of Fluid-Structure-Interaction Approaches to Blood Flow Modeling With Vessel Prestress
,”
World Congress on Computational Mechanics
, New York.
50.
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators,
2016
, “
Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 310 Diseases and Injuries, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015
,”
Lancet
,
388
, pp.
1545
1602
.10.1016/S0140-6736(16)31678-6
51.
Tran
,
J. S.
,
Schiavazzi
,
D. E.
,
Kahn
,
A. M.
, and
Marsden
,
A. L.
,
2019
, “
Uncertainty Quantification of Simulated Biomechanical Stimuli in Coronary Artery Bypass Grafts
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
402
428
.10.1016/j.cma.2018.10.024
52.
Numao
,
T.
,
Ogawa
,
K.
,
Fujinuma
,
H.
, and
Furuya
,
N.
,
1997
, “
Pulsatile Diameter Change of Coronary Artery Lumen Estimated by Intravascular Ultrasound
,”
J. Cardiol.
,
30
(1), pp.
1
8
.
53.
Cho
,
K. I.
,
Park
,
J. H.
,
Park
,
J. R.
,
Kim
,
S.
,
Ahn
,
J. M.
,
Lee
,
J. H.
,
Jang
,
H. J.
, and
Kim
,
T. I.
,
2006
, “
Assessment of Left Ventricular Function in Symptomatic Patients With Myocardial Bridge Using Two-Dimensional Strain
,”
Korean Circ. J.
,
36
(
9
), p.
617
.10.4070/kcj.2006.36.9.617
54.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.10.1016/j.jbiomech.2006.09.003
55.
Williamson
,
S. D.
,
Lam
,
Y.
,
Younis
,
H. F.
,
Huang
,
H.
,
Patel
,
S.
,
Kaazempur-Mofrad
,
M. R.
, and
Kamm
,
R. D.
,
2003
, “
On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties
,”
ASME J. Biomech. Eng.
,
125
(
1
), p.
147
.10.1115/1.1537736
56.
Fayad
,
Z. A.
,
Fuster
,
V.
,
Fallon
,
J. T.
,
Jayasundera
,
T.
,
Worthley
,
S. G.
,
Helft
,
G.
,
Aguinaldo
,
J. G.
,
Badimon
,
J. J.
, and
Sharma
,
S. K.
,
2000
, “
Noninvasive In Vivo Human Coronary Artery Lumen and Wall Imaging Using Black-Blood Magnetic Resonance Imaging
,”
Circulation
,
102
(
5
), pp.
506
510
.10.1161/01.CIR.102.5.506
57.
Mensel
,
B.
,
Kühn
,
J. P.
,
Schneider
,
T.
,
Quadrat
,
A.
, and
Hegenscheid
,
K.
,
2013
, “
Mean Thoracic Aortic Wall Thickness Determination by Cine MRI With Steady-State Free Precession: Validation With Dark Blood Imaging
,”
Acad. Radiol.
,
20
(
8
), pp.
1004
1008
.10.1016/j.acra.2013.03.014
58.
Lemaitre
,
J.
,
2001
.,
Handbook of Materials Behavior Models
,
Academic Press
,
Cambridge, MA
You do not currently have access to this content.