Abstract

Transluminal attenuation gradient (TAG), defined as the gradient of the contrast agent attenuation drop along the vessel, is an imaging biomarker that indicates stenosis in the coronary arteries. The transluminal attenuation flow encoding (TAFE) equation is a theoretical platform that quantifies blood flow in each coronary artery based on computed tomography angiography (CTA) imaging. This formulation couples TAG (i.e., contrast dispersion along the vessel) with fluid dynamics. However, this theoretical concept has never been validated experimentally. The aim of this proof-of-principle phantom study is to validate TAFE based on CTA imaging. Dynamic CTA images were acquired every 0.5 s. The average TAFE estimated flow rates were compared against four predefined pump values in a straight (20, 25, 30, 35, and 40 ml/min) and a tapered phantom (25, 35, 45, and 55 ml/min). Using the TAFE formulation with no correction, the flow rates were underestimated by 33% and 81% in the straight and tapered phantoms, respectively. The TAFE formulation was corrected for imaging artifacts focusing on partial volume averaging and radial variation of contrast enhancement. After corrections, the flow rates estimated in the straight and tapered phantoms had an excellent Pearson correlation of r = 0.99 and 0.87 (p < 0.001), respectively, with only a 0.6%±0.2 mL/min difference in estimation of the flow rate. In this proof-of-concept phantom study, we corrected the TAFE formulation and showed a good agreement with the actual pump values. Future clinical validations are needed for feasibility of TAFE in clinical use.

References

1.
Hoffmann
,
U.
,
Ferencik
,
M.
,
Udelson
,
J. E.
,
Picard
,
M. H.
,
Truong
,
Q. A.
,
Patel
,
M. R.
,
Huang
,
M.
,
Pencina
,
M.
,
Mark
,
D. B.
,
Heitner
,
J. F.
,
Fordyce
,
C. B.
,
Pellikka
,
P. A.
,
Tardif
,
J. C.
,
Budoff
,
M.
,
Nahhas
,
G.
,
Chow
,
B.
,
Kosinski
,
A. S.
,
Lee
,
K. L.
, and
Douglas
,
P. S.
,
2017
, “
Prognostic Value of Noninvasive Cardiovascular Testing in Patients With Stable Chest Pain: Insights From the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain)
,”
Circulation
,
135
(
24
), pp.
2320
2332
.10.1161/CIRCULATIONAHA.116.024360
2.
Meijboom
,
W. B.
,
Van Mieghem
,
C. A. G.
,
van Pelt
,
N.
,
Weustink
,
A.
,
Pugliese
,
F.
,
Mollet
,
N. R.
,
Boersma
,
E.
,
Regar
,
E.
,
van Geuns
,
R. J.
,
de Jaegere
,
P. J.
,
Serruys
,
P. W.
,
Krestin
,
G. P.
, and
de Feyter
,
P. J.
,
2008
, “
Comprehensive Assessment of Coronary Artery Stenoses. Computed Tomography Coronary Angiography Versus Conventional Coronary Angiography and Correlation With Fractional Flow Reserve in Patients With Stable Angina
,”
J. Am. Coll. Cardiol.
,
52
(
8
), pp.
636
643
.10.1016/j.jacc.2008.05.024
3.
Abd
,
T. T.
, and
George
,
R. T.
,
2015
, “
Association of Coronary Plaque Burden With Fractional Flow Reserve: Should We Keep Attempting to Derive Physiology From Anatomy?
,”
Cardiovasc. Diagn. Ther.
,
5
(
1
), pp.
67
70
.10.3978/j.issn.2223-3652.2015.01.07
4.
Eslami
,
P.
,
Seo
,
J.-H.
,
Rahsepar
,
A. A.
,
George
,
R.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2015
, “
Computational Study of Computed Tomography Contrast Gradients in Models of Stenosed Coronary Arteries
,”
ASME J. Biomech. Eng.
,
137
(
9
), p.
091002
.10.1115/1.4030891
5.
Lardo
,
A. C.
,
Rahsepar
,
A. A.
,
Seo
,
J. H.
,
Eslami
,
P.
,
Korley
,
F.
,
Kishi
,
S.
,
Abd
,
T.
,
Mittal
,
R.
, and
George
,
R. T.
,
2015
, “
Estimating Coronary Blood Flow Using CT Transluminal Attenuation Flow Encoding: Formulation, Preclinical Validation, and Clinical Feasibility
,”
J. Cardiovasc. Comput. Tomogr.
,
9
(
6
), pp.
559
566
.10.1016/j.jcct.2015.03.018
6.
Lee
,
J. M.
,
Choi
,
G.
,
Koo
,
B.-K.
,
Hwang
,
D.
,
Park
,
J.
,
Zhang
,
J.
,
Kim
,
K.-J.
,
Tong
,
Y.
,
Kim
,
H. J.
,
Grady
,
L.
,
Doh
,
J.-H.
,
Nam
,
C.-W.
,
Shin
,
E.-S.
,
Cho
,
Y.-S.
,
Choi
,
S.-Y.
,
Chun
,
E. J.
,
Choi
,
J.-H.
,
Nørgaard
,
B. L.
,
Christiansen
,
E. H.
,
Niemen
,
K.
,
Otake
,
H.
,
Penicka
,
M.
,
de Bruyne
,
B.
,
Kubo
,
T.
,
Akasaka
,
T.
,
Narula
,
J.
,
Douglas
,
P. S.
,
Taylor
,
C. A.
, and
Kim
,
H.-S.
,
2019
, “
Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics
,”
JACC Cardiovasc. Imaging
,
12
(
6
), pp.
1032
1012
.10.1016/j.jcmg.2018.01.023
7.
Lu
,
M. T.
,
Ferencik
,
M.
,
Roberts
,
R. S.
,
Lee
,
K. L.
,
Ivanov
,
A.
,
Adami
,
E.
,
Mark
,
D. B.
,
Jaffer
,
F. A.
,
Leipsic
,
J. A.
,
Douglas
,
P. S.
, and
Hoffmann
,
U.
,
2017
, “
Noninvasive FFR Derived From Coronary CT Angiography. Management and Outcomes in the PROMISE Trial
,”
JACC Cardiovasc. Imaging
,
10
(
11
), pp.
1350
1358
.10.1016/j.jcmg.2016.11.024
8.
Korporaal
,
J. G.
,
Benz
,
M. R.
,
Schindera
,
S. T.
,
Flohr
,
T. G.
, and
Schmidt
,
B.
,
2016
, “
Contrast Gradient-Based Blood Velocimetry With Computed Tomography
,”
Invest. Radiol.
,
51
(
1
), pp.
41
49
.10.1097/RLI.0000000000000202
9.
Prevrhal
,
S.
,
Forsythe
,
C. H.
,
Harnish
,
R. J.
,
Saeed
,
M.
, and
Yeh
,
B. M.
,
2011
, “
CT Angiographic Measurement of Vascular Blood Flow Velocity by Using Projection Data
,”
Radiology
,
261
(
3
), pp.
923
929
.10.1148/radiol.11110617
10.
Barfett
,
J. Jo.
,
Velauthapillai
,
N.
,
Fierstra
,
J.
,
Crawley
,
A.
,
Coolens
,
C.
,
Crean
,
A.
,
Jaskolka
,
J.
,
Dufort
,
P.
,
Krings
,
T.
, and
Mikulis
,
D.
,
2014
, “
Intra-Vascular Blood Velocity and Volumetric Flow Rate Calculated From Dynamic 4D CT Angiography Using a Time of Flight Technique
,”
Int. J. Cardiovasc. Imaging
,
30
(
7
), pp.
1383
1392
.10.1007/s10554-014-0471-3
11.
Joe
,
J. B.
,
Jorn
,
F.
,
David
,
J. M.
, and
Timpo
,
K.
,
2010
, “
Blood Velocity Calculated From Volumetric Dynamic Computed Scanning of Flow Phantoms
,”
Invest. Radiol.
,
45
(
12
), pp.
10
13
.10.1097/RLI.0b013e3181ea3588
12.
Mahnken
,
A. H.
,
Grasruck
,
M.
,
Schmidt
,
B.
,
Günther
,
R. W.
, and
Wildberger
,
J. E.
,
2008
, “
Flat Panel Computed Tomography for Non-Invasive Flow Measurement: Initial Results in In-Vitro Studies
,”
Eur. Radiol.
,
18
(
4
), pp.
747
752
.10.1007/s00330-007-0819-3
13.
Choi
,
J.-H.
,
Koo
,
B.-K.
,
Yoon
,
Y. E.
,
Min
,
J. K.
,
Song
,
Y.-B.
,
Hahn
,
J.-Y.
,
Choi
,
S.-H.
,
Gwon
,
H.-C.
, and
Choe
,
Y. H.
,
2012
, “
Diagnostic Performance of Intracoronary Gradient-Based Methods by Coronary Computed Tomography Angiography for the Evaluation of Physiologically Significant Coronary Artery Stenoses: A Validation Study With Fractional Flow Reserve
,”
Eur. Heart J. Cardiovasc. Imaging
,
13
(
12
), pp.
1001
1007
.10.1093/ehjci/jes130
14.
Stuijfzand
,
W. J.
,
Danad
,
I.
,
Raijmakers
,
P. G.
,
Marcu
,
C. B.
,
Heymans
,
M. W.
,
van Kuijk
,
C. C.
,
van Rossum
,
A. C.
,
Nieman
,
K.
,
Min
,
J. K.
,
Leipsic
,
J.
,
van Royen
,
N.
, and
Knaapen
,
P.
,
2014
, “
Additional Value of Transluminal Attenuation Gradient in CT Angiography to Predict Hemodynamic Significance of Coronary Artery Stenosis
,”
JACC Cardiovasc. Imaging
,
7
(
4
), pp.
374
386
.10.1016/j.jcmg.2013.12.013
15.
Wong
,
D. T. L.
,
Ko
,
B. S.
,
Cameron
,
J. D.
,
Nerlekar
,
N.
,
Leung
,
M. C. H.
,
Malaiapan
,
Y.
,
Crossett
,
M.
,
Leong
,
D. P.
,
Worthley
,
S. G.
,
Troupis
,
J.
,
Meredith
,
I. T.
, and
Seneviratne
,
S. K.
,
2013
, “
Transluminal Attenuation Gradient in Coronary Computed Tomography Angiography is a Novel Noninvasive Approach to the Identification of Functionally Significant Coronary Artery Stenosis: A Comparison With Fractional Flow Reserve
,”
J. Am. Coll. Cardiol.
,
61
(
12
), pp.
1271
1279
.10.1016/j.jacc.2012.12.029
16.
Zheng
,
M.
,
Wei
,
M.
,
Wen
,
D.
,
Zhao
,
H.
,
Liu
,
Y.
,
Li
,
J.
, and
Li
,
J.
,
2015
, “
Transluminal Attenuation Gradient in Coronary Computed Tomography Angiography for Determining Stenosis Severity of Calcified Coronary Artery: A Primary Study With Dual-Source CT
,”
Eur. Radiol.
,
25
(
5
), pp.
1219
1228
.10.1007/s00330-014-3519-9
17.
Lardo
,
A. C.
,
Rahsepar
,
A. A.
,
Seo
,
J. H.
,
Eslami
,
P.
,
Korley
,
F.
, and
George
,
R. T.
,
2015
, “
Computed Tomography Transluminal Attenuation Flow Encoding (TAFE): Formulation, Preclinical Validation and Clinical Feasibility
,”
J. Cardiovasc. Comput. Tomogr.
, 9(6), pp. 559–566.
18.
Maceira
,
A. M.
,
Prasad
,
S. K.
,
Khan
,
M.
, and
Pennell
,
D. J.
,
2006
, “
Normalized Left Ventricular Systolic and Diastolic Function by Steady State Free Precession Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson.
,
8
(
3
), pp.
417
426
.10.1080/10976640600572889
19.
Maceira
,
A. M.
,
Prasad
,
S. K.
,
Khan
,
M.
, and
Pennell
,
D. J.
,
2006
, “
Reference Right Ventricular Systolic and Diastolic Function Normalized to Age, Gender and Body Surface Area From Steady-State Free Precession Cardiovascular Magnetic Resonance
,”
Eur. Heart J.
,
27
(
23
), pp.
2879
2888
.10.1093/eurheartj/ehl336
20.
Dodge
, Jr.
,
J. T.
,
Brown
,
G. B.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries: Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.10.1161/01.CIR.86.1.232
21.
Waller
,
B. F.
,
Orr
,
C. M.
,
Slack
,
J. D.
,
Pinkerton
,
C. A.
,
Van Tassel
,
J.
, and
Peters
,
T.
,
1992
, “
Anatomy, Histology, and Pathology of Coronary Arteries: A Review Relevant to New Interventional and Imaging Techniques—Part II
,”
Clin. Cardiol.
,
15
(
7
), pp.
535
550
.10.1002/clc.4960150712
22.
Canny
,
J.
,
1986
, “
A Computational Approach to Edge Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-8
(
6
), pp.
679
698
.10.1109/TPAMI.1986.4767851
23.
Appel
,
A.
,
1968
, “
Some Techniques for Shading Machine Renderings of Solids
,”
AFIPS Conference Proceedings
, Atlantic City, NJ, Apr. 30–May 2, pp.
37
45
.10.1145/1468075.1468082
24.
Chan
,
T. F.
, and
Vese
,
L. A.
,
2001
, “
Active Contours Without Edges
,”
IEEE Trans. Image Process.
,
10
(
2
), pp.
266
277
.10.1109/83.902291
25.
Boxt
,
L. M.
,
2004
, “
Magnetic Resonance and Computed Tomographic Evaluation of Congenital Heart Disease
,”
J. Magn. Reson. Imaging
,
19
(
6
), pp.
827
847
.10.1002/jmri.20077
You do not currently have access to this content.