Abstract

Biomechanical testbench emulating the physiological loading of the pelvis is crucial in developing reconstructive implants for fragility fractures of the pelvis. Additionally, it will help understand the influence of the common daily loading on the pelvic ring. However, most reported experimental studies were mainly comparative with simplified loading and boundary conditions. In Part I of our study, we described the concept of the computational experiment design to design and construct a biomechanical testbench emulating the gait movement of the pelvis. The 57 muscles and joints' contact forces were reduced to four force actuators and one support, producing a similar stress distribution. The experimental setup is explained in this paper and some experimental results are presented. In addition, a series of repeatability and reproducibility tests were conducted to assess the test stand capabilities of replicating the gait physiological loading. The calculated stresses and the experimentally recorded strains showed that the pelvic ring response to the loading always follows the loaded leg side during the gait cycle. Furthermore, the experimental results of the pelvis displacement and strain at selected locations match the numerical ones. The developed test stand and the concept of computational experiment design behind it provide guidelines on how to design biomechanical testing equipment with physiological relevance.

References

1.
Vigdorchik
,
J. M.
,
Esquivel
,
A. O.
,
Jin
,
X.
,
Yang
,
K. H.
,
Onwudiwe
,
N. A.
, and
Vaidya
,
R.
,
2012
, “
Biomechanical Stability of a Supra-Acetabular Pedicle Screw Internal Fixation Device (INFIX) vs External Fixation and Plates for Vertically Unstable Pelvic Fractures
,”
J. Orthop. Surg. Res.
,
7
(
1
), p.
31
.10.1186/1749-799X-7-31
2.
Osterhoff
,
G.
,
Tiziani
,
S.
,
Hafner
,
C.
,
Ferguson
,
S. J.
,
Simmen
,
H.-P.
, and
Werner
,
C. M. L.
,
2016
, “
Symphyseal Internal Rod Fixation Versus Standard Plate Fixation for Open Book Pelvic Ring Injuries: A Biomechanical Study
,”
Eur. J. Trauma Emerg. Surg.
,
42
(
2
), pp.
197
202
.10.1007/s00068-015-0529-5
3.
Acklin
,
Y. P.
,
Zderic
,
I.
,
Richards
,
R. G.
,
Schmitz
,
P.
,
Gueorguiev
,
B.
, and
Grechenig
,
S.
,
2018
, “
Biomechanical Investigation of Four Different Fixation Techniques in Sacrum Denis Type II Fracture With Low Bone Mineral Density
,”
J. Orthop. Res.
,
36
(
6
), pp.
1624
1629
.10.1002/jor.23798
4.
Grüneweller
,
N.
,
Raschke
,
M. J.
,
Zderic
,
I.
,
Widmer
,
D.
,
Wähnert
,
D.
,
Gueorguiev
,
B.
,
Richards
,
R. G.
,
Fuchs
,
T.
, and
Windolf
,
M.
,
2017
, “
Biomechanical Comparison of Augmented Versus Non-Augmented Sacroiliac Screws in a Novel Hemi-Pelvis Test Model
,”
J. Orthop. Res.
,
35
(
7
), pp.
1485
1493
.10.1002/jor.23401
5.
Lodde
,
M. F.
,
Katthagen
,
J. C.
,
Schopper
,
C. O.
,
Zderic
,
I.
,
Richards
,
G.
,
Gueorguiev
,
B.
,
Raschke
,
M. J.
, and
Hartensuer
,
R.
,
2021
, “
Biomechanical Comparison of Five Fixation Techniques for Unstable Fragility Fractures of the Pelvic Ring
,”
J. Clin. Med.
,
10
(
11
), p.
2326
.10.3390/jcm10112326
6.
Agarwal
,
Y.
,
Doebele
,
S.
,
Windolf
,
M.
,
Shiozawa
,
T.
,
Gueorguiev
,
B.
, and
Stuby
,
F. M.
,
2014
, “
Two-Leg Alternate Loading Model—A Different Approach to Biomechanical Investigations of Fixation Methods of the Injured Pelvic Ring With Focus on the Pubic Symphysis
,”
J. Biomech.
,
47
(
2
), pp.
380
386
.10.1016/j.jbiomech.2013.11.008
7.
Ramezani
,
M.
,
Klima
,
S.
,
de la Herverie
,
P. L. C.
,
Campo
,
J.
,
Le Joncour
,
J.-B.
,
Rouquette
,
C.
,
Scholze
,
M.
, and
Hammer
,
N.
,
2019
, “
In Silico Pelvis and Sacroiliac Joint Motion: Refining a Model of the Human Osteoligamentous Pelvis for Assessing Physiological Load Deformation Using an Inverted Validation Approach
,”
BioMed Res. Int.
,
2019
, pp.
1
12
.10.1155/2019/3973170
8.
Wu
,
Y.-D.
,
Cai
,
X.-H.
,
Liu
,
X.-M.
, and
Zhang
,
H.-X.
,
2013
, “
Biomechanical Analysis of the Acetabular Buttress-Plate: Are Complex Acetabular Fractures in the Quadrilateral Area Stable After Treatment With Anterior Construct Plate-1/3 Tube Buttress Plate Fixation?
,”
Clinics
,
68
(
7
), pp.
1028
1033
.10.6061/clinics/2013(07)22
9.
Klima
,
S.
,
Grunert
,
R.
,
Ondruschka
,
B.
,
Scholze
,
M.
,
Seidel
,
T.
,
Werner
,
M.
, and
Hammer
,
N.
,
2018
, “
Pelvic Orthosis Effects on Posterior Pelvis Kinematics an In-Vitro Biomechanical Study
,”
Sci. Rep.
,
8
(
1
), p.
15980
.10.1038/s41598-018-34387-7
10.
Sawbones
,
2021
, “
Sawbones Biomechanical Catalogue
,” Sawbones, Vashon Island, WA, accessed May 7, 2021, https://www.sawbones.com/catalog/biomechanical.html
11.
Festo,
2020
, “
Festo USA
,” Festo, Esslingen, Germany, accessed May 2, 2020, https://www.festo.com/us/en/
12.
National Instruments,
2019
, “
National Instruments
,” National Instruments Corp, Austin, TX, accessed Aug. 2, 2019, https://www.ni.com/en-us.html
13.
HBM,
2020
, “
Hbm
,” HBK GmbH, Darmstadt, Germany, accessed June 2, 2022, https://www.hbm.com/en/
14.
Hermann
,
S.
,
2015
, “
Virtual Strain Gauges and Virtual Calibration for the Correlation of Landing Gear Simulation Models,” ANSYS Conference & 33rd CADFEM Users' Meeting
, Bremen, Germany, June 25, p.
29
.
15.
Ansys
®,
2020
, “
Academic Research Mechanical, Release 20.2 Ansys Mechanical, Structural FEA Analysis Software
,” Ansys®, Canonsburg, PA, accessed May 4, 2021, https://www.ansys.com/products/structures/ansys-mechanical
16.
Ricci
,
P.-L.
,
2019
, “
Numerical Analysis of Gait Load Distribution in the Human Pelvis and Design of a Biomechanical Testing Device: Experimental Assessment of Two Implants for Anterior Fragility Fractures
,”
Ph.D. thesis
,
University of Luxembourg
,
Luxembourg, Luxembourg
.https://orbilu.uni.lu/handle/10993/40003
17.
Ricci
,
P.-L.
,
Maas
,
S.
,
Gerich
,
T.
, and
Kelm
,
J.
,
2017
, “
An Advanced Approach to Design Experiments to Investigate the Biomechanics of the Pelvis
,”
Proceedings of the 23rd Congress of the European Society of Biomechanics
,
Seville
,
Spain
, July 2–5.https://orbilu.uni.lu/handle/10993/32620
18.
Item
,
2018
, “
Item
,” Item, Solingen, Germany, accessed May 8, 2019, https://www.item24.com/de-de/
19.
SKF
,
2020
, “
SKF
,” SKF, Gothenburg, Sweden, accessed June 2, 2020, https://www.skf.com/group/products/plain-bearings
20.
Lee
,
C.-H.
,
Hsu
,
C.-C.
, and
Huang
,
P.-Y.
,
2017
, “
Biomechanical Study of Different Fixation Techniques for the Treatment of Sacroiliac Joint Injuries Using Finite Element Analyses and Biomechanical Tests
,”
Comput. Biol. Med.
,
87
, pp.
250
257
.10.1016/j.compbiomed.2017.06.007
21.
Chaiyamongkol
,
W.
,
Kritsaneephaiboon
,
A.
,
Bintachitt
,
P.
,
Suwannaphisit
,
S.
, and
Tangtrakulwanich
,
B.
,
2018
, “
Biomechanical Study of Posterior Pelvic Fixations in Vertically Unstable Sacral Fractures: An Alternative to Triangular Osteosynthesis
,”
Asian Spine J.
,
12
(
6
), pp.
967
972
.10.31616/asj.2018.12.6.967
22.
Liu
,
L.
,
Zeng
,
D.
,
Fan
,
S.
,
Peng
,
Y.
,
Song
,
H.
,
Jin
,
D.
, and
Zeng
,
L.
,
2021
, “
Biomechanical Study of Tile C3 Pelvic Fracture Fixation Using an Anterior Internal System Combined With Sacroiliac Screws
,”
J. Orthop. Surg. Res.
,
16
(
1
), p.
225
.10.1186/s13018-021-02348-y
23.
Berber
,
O.
,
Amis
,
A. A.
, and
Day
,
A. C.
,
2011
, “
Biomechanical Testing of a Concept of Posterior Pelvic Reconstruction in Rotationally and Vertically Unstable Fractures
,”
J. Bone Jt. Surg., Br. Vol.
,
93-B
(
2
), pp.
237
244
.10.1302/0301-620X.93B2.24567
24.
McLachlin
,
S.
,
Lesieur
,
M.
,
Stephen
,
D.
,
Kreder
,
H.
, and
Whyne
,
C.
,
2018
, “
Biomechanical Analysis of Anterior Ring Fixation of the Ramus in Type C Pelvis Fractures
,”
Eur. J. Trauma Emerg. Surg.
,
44
(
2
), pp.
185
190
.10.1007/s00068-017-0788-4
25.
Becker
,
C. A.
,
Kammerlander
,
C.
,
Kußmaul
,
A. C.
,
Woiczinski
,
M.
,
Thorwächter
,
C.
,
Zeckey
,
C.
,
Sommer
,
F.
,
Linhart
,
C.
,
Weidert
,
S.
,
Suero
,
E. M.
,
Böcker
,
W.
, and
Greiner
,
A.
,
2019
, “
Modified Less Invasive Anterior Subcutaneous Fixator for Unstable Tile-C-Pelvic Ring Fractures: A Biomechanical Study
,”
Biomed. Eng. Online
,
18
(
1
), p.
38
.10.1186/s12938-019-0648-z
You do not currently have access to this content.