Abstract

This work developed, validated, and compared statistical shape, statistical intensity, and statistical shape and intensity models (SSMs, SIMs, SSIMs) of scapulae from a clinical population. SSMs efficiently describe bone shape variation while SIMs describe bone material property variation, and SSIM's combine description of both variables. This work establishes these models' efficacy and whether they can be used in surgical planning. Models were developed using shoulder arthroplasty data of patients with bone erosion, which is challenging to treat and would benefit from improved surgical planning. Models were created using previously validated nonrigid registration and material property assignment processes that were optimized for scapula characteristics. The models were assessed using standard metrics, anatomical measurements, and correlation analyses. The SSM and SIM specificity and generalization error metrics were 3.4 mm and <1 mm and 184 HU and 156 HU, respectively. The SSIM did not achieve the same level of performance as the SSM and SIM in this study (e.g., shape generalization: SSIM—2.2 mm versus SSM—<1 mm). Anatomical correlation analysis showed that the SSM more effectively and efficiently described shape variation compared to the SSIM. The SSM and SIM modes of variation were not strongly correlated (e.g., rmax = 0.56 for modes explaining ≤2.1% of variance). The SSIM is outperformed by the SSM and SIM and the latter two are not strongly correlated; therefore, using the SSM and SIM in conjunction will generate synthetic bone models with realistic characteristics and thus can be used for biomechanical surgical planning applications.

References

1.
Bercik
,
M. J.
,
Kruse
,
K.
,
Yalizis
,
M.
,
Gauci
,
M.-O.
,
Chaoui
,
J.
, and
Walch
,
G.
,
2016
, “
A Modification to the Walch Classification of the Glenoid in Primary Glenohumeral Osteoarthritis Using Three-Dimensional Imaging
,”
J. Shoulder Elbow Surg.
,
25
(
10
), pp.
1601
1606
.10.1016/j.jse.2016.03.010
2.
Walch
,
G.
,
Badet
,
R.
,
Boulahia
,
A.
, and
Khoury
,
A.
,
1999
, “
Morphologic Study of the Glenoid in Primary Glenohumeral Osteoarthritis
,”
J. Arthroplasty
,
14
(
6
), pp.
756
760
.10.1016/S0883-5403(99)90232-2
3.
Neyton
,
L.
,
Gauci
,
M. O.
,
Deransart
,
P.
,
Collotte
,
P.
,
Walch
,
G.
, and
Athwal
,
G. S.
,
2019
, “
Three-Dimensional Characterization of the Anteverted Glenoid (Type D) in Primary Glenohumeral Osteoarthritis
,”
J. Shoulder Elbow Surg.
,
28
(
6
), pp.
1175
1182
.10.1016/j.jse.2018.09.015
4.
Rouleau
,
D. M.
,
Kidder
,
J. F.
,
Pons-Villanueva
,
J.
,
Dynamidis
,
S.
,
Defranco
,
M.
, and
Walch
,
G.
,
2010
, “
Glenoid Version: How to Measure It? Validity of Different Methods in Two-Dimensional Computed Tomography Scans
,”
J. Shoulder Elbow Surg.
,
19
(
8
), pp.
1230
1237
.10.1016/j.jse.2010.01.027
5.
Sirveaux
,
F.
,
Favard
,
L.
,
Oudet
,
D.
,
Huquet
,
D.
,
Walch
,
G.
, and
Mole
,
D.
,
2004
, “
Grammont Inverted Total Shoulder Arthroplasty in the Treatment of Glenohumeral Osteoarthritis With Massive Rupture of the Cuff
,”
J. Bone Jt. Surg., Br.
,
86
(
3
), pp.
388
395
.10.1302/0301-620X.86B3.14024
6.
Chamseddine
,
M.
,
Breden
,
S.
,
Pietschmann
,
M. F.
,
Müller
,
P. E.
, and
Chevalier
,
Y.
,
2019
, “
Periprosthetic Bone Quality Affects the Fixation of Anatomic Glenoids in Total Shoulder Arthroplasty: In Vitro Study
,”
J. Shoulder Elbow Surg.
,
28
(
1
), pp.
e18
e28
.10.1016/j.jse.2018.07.012
7.
Mariaux
,
S.
,
Obrist
,
R.
,
Farron
,
A.
,
Becce
,
F.
, and
Terrier
,
A.
,
2021
, “
Is Preoperative Glenoid Bone Mineral Density Associated With Aseptic Glenoid Implant Loosening in Anatomic Total Shoulder Arthroplasty?
,”
BMC Musculoskeletal Disord.,
22
, pp.
1
9
.10.1186/s12891-020-03892-0
8.
Knowles
,
N. K.
,
Athwal
,
G. S.
,
Keener
,
J. D.
, and
Ferreira
,
L. M.
,
2015
, “
Regional Bone Density Variations in Osteoarthritic Glenoids: A Comparison of Symmetric to Asymmetric (Type B2) Erosion Patterns
,”
J. Shoulder Elbow Surg.
,
24
(
3
), pp.
425
432
.10.1016/j.jse.2014.07.004
9.
Mahaffy
,
M. D.
,
Knowles
,
N. K.
,
Berkmortel
,
C.
,
Abdic
,
S.
,
Walch
,
G.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2020
, “
Density Distribution of the Type E2 Glenoid in Cuff Tear Arthropathy
,”
J. Shoulder Elbow Surg.
,
29
(
1
), pp.
167
174
.10.1016/j.jse.2019.05.046
10.
Letissier
,
H.
,
Chaoui
,
J.
,
Bercik
,
M. J.
,
Boileau
,
P.
,
Le Nen
,
D.
,
Stindel
,
E.
, and
Walch
,
G.
,
2020
, “
Glenoid Subchondral Bone Density in Osteoarthritis: A Comparative Study of Asymmetric and Symmetric Erosion Patterns
,”
Orthop. Traumatol.: Surg. Res.
,
106
(
6
), pp.
1127
1134
.10.1016/j.otsr.2020.06.004
11.
Walch
,
G.
,
Vezeridis
,
P. S.
,
Boileau
,
P.
,
Deransart
,
P.
, and
Chaoui
,
J.
,
2015
, “
Three-Dimensional Planning and Use of Patient-Specific Guides Improve Glenoid Component Position: An In Vitro Study
,”
J. Shoulder Elbow Surg.
,
24
(
2
), pp.
302
309
.10.1016/j.jse.2014.05.029
12.
Boileau
,
P.
,
Cheval
,
D.
,
Gauci
,
M.-O.
,
Holzer
,
N.
,
Chaoui
,
J.
, and
Walch
,
G.
,
2018
, “
Automated Three-Dimensional Measurement of Glenoid Version and Inclination in Arthritic Shoulders
,”
J. Bone Jt. Surg., Am. Vol.
,
100
(
1
), pp.
57
65
.10.2106/JBJS.16.01122
13.
Sarkalkan
,
N.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2014
, “
Statistical Shape and Appearance Models of Bones
,”
Bone
,
60
, pp.
129
140
.10.1016/j.bone.2013.12.006
14.
Inyang
,
A. O.
,
Fouefack
,
J.-R.
,
Sivarasu
,
S.
,
Roche
,
S.
,
Borotikar
,
B.
,
Burdin
,
V.
, and
Mutsvangwa
,
T.
,
2017
, “
Assessment of 3D Morphological Characteristics of the Shoulder Bones Using Statistical Shape Modeling: Prospective Application to Handedness
,” Proceedings of the
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, Jeju, South Korea,
July 11–15
, pp.
1629
1632
.10.1109/EMBC.2017.8037151
15.
Tsai
,
T.-Y.
,
Li
,
J.-S.
,
Wang
,
S.
,
Li
,
P.
,
Kwon
,
Y.-M.
, and
Li
,
G.
,
2015
, “
Principal Component Analysis in Construction of 3D Human Knee Joint Models Using a Statistical Shape Model Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
7
), pp.
721
729
.10.1080/10255842.2013.843676
16.
Hollenbeck
,
J. F. M.
,
Cain
,
C. M.
,
Fattor
,
J. A.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2018
, “
Statistical Shape Modeling Characterizes Three-Dimensional Shape and Alignment Variability in the Lumbar Spine
,”
J. Biomech.
,
69
, pp.
146
155
.10.1016/j.jbiomech.2018.01.020
17.
Mayya
,
M.
,
Poltaretskyi
,
S.
,
Hamitouche
,
C.
, and
Chaoui
,
J.
,
2013
, “
Scapula Statistical Shape Model Construction Based on Watershed Segmentation and Elastic Registration
,”
Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging
, San Francisco, CA, Apr. 7–11, pp.
101
104
.10.1109/ISBI.2013.6556422
18.
Casier
,
S. J.
,
Van den Broecke
,
R.
,
Van Houcke
,
J.
,
Audenaert
,
E.
,
De Wilde
,
L. F.
, and
Van Tongel
,
A.
,
2018
, “
Morphologic Variations of the Scapula in 3-Dimensions: A Statistical Shape Model Approach
,”
J. Shoulder Elbow Surg.
,
27
(
12
), pp.
2224
2231
.10.1016/j.jse.2018.06.001
19.
Sintini
,
I.
,
Burton
,
W. S.
,
Sade
,
P.
,
Chavarria
,
J. M.
, and
Laz
,
P. J.
,
2018
, “
Investigating Gender and Ethnicity Differences in Proximal Humeral Morphology Using a Statistical Shape Model
,”
J. Orthop. Res.
,
36
(
11
), pp.
3043
3052
.10.1002/jor.24070
20.
Lee
,
E. C. S.
,
Roach
,
N. T.
,
Clouthier
,
A. L.
,
Bicknell
,
R. T.
,
Bey
,
M. J.
,
Young
,
N. M.
, and
Rainbow
,
M. J.
,
2020
, “
Three-Dimensional Scapular Morphology Is Associated With Rotator Cuff Tears and Alters the Abduction Moment Arm of the Supraspinatus
,”
Clin. Biomech.
,
78
, p.
105091
.10.1016/j.clinbiomech.2020.105091
21.
Plessers
,
K.
,
Verhaegen
,
F.
,
van Dijck
,
C.
,
Wirix-Speetjens
,
R.
,
Debeer
,
P.
,
Jonkers
,
I.
, and
Vander Sloten
,
J.
,
2020
, “
Automated Quantification of Glenoid Bone Defects Using 3-Dimensional Measurements
,”
J. Shoulder Elbow Surg.
,
29
(
5
), pp.
1050
1058
.10.1016/j.jse.2019.10.007
22.
Plessers
,
K.
,
Vanden Berghe
,
P.
,
van Dijck
,
C.
,
Wirix-Speetjens
,
R.
,
Debeer
,
P.
,
Jonkers
,
I.
, and
Vander Sloten
,
J.
,
2018
, “
Virtual Reconstruction of Glenoid Bone Defects Using a Statistical Shape Model
,”
J. Shoulder Elbow Surg.
,
27
(
1
), pp.
160
166
.10.1016/j.jse.2017.07.026
23.
Poltaretskyi
,
S.
,
Chaoui
,
J.
,
Mayya
,
M.
,
Hamitouche
,
C.
,
Bercik
,
M. J.
,
Boileau
,
P.
, and
Walch
,
G.
,
2017
, “
Prediction of the Pre-Morbid 3D Anatomy of the Proximal Humerus Based on Statistical Shape Modelling
,”
Bone Jt. J.
,
99-B
(
7
), pp.
927
933
.10.1302/0301-620X.99B7.BJJ-2017-0014
24.
Vanden Berghe
,
P.
,
Demol
,
J.
,
Gelaude
,
F.
, and
Vander Sloten
,
J.
,
2017
, “
Virtual Anatomical Reconstruction of Large Acetabular Bone Defects Using a Statistical Shape Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
6
), pp.
577
586
.10.1080/10255842.2016.1265110
25.
Verhaegen
,
F.
,
Meynen
,
A.
,
Pitocchi
,
J.
,
Debeer
,
P.
, and
Scheys
,
L.
,
2023
, “
Quantitative Statistical Shape Model-Based Analysis of Humeral Head Migration, Part 2: Shoulder Osteoarthritis
,”
J. Orthop. Res.
,
41
(
1
), pp.
21
31
.10.1002/jor.25335
26.
Verhaegen
,
F.
,
Meynen
,
A.
,
Matthews
,
H.
,
Claes
,
P.
,
Debeer
,
P.
, and
Scheys
,
L.
,
2021
, “
Determination of Pre-Arthropathy Scapular Anatomy With a Statistical Shape Model: Part I—Rotator Cuff Tear Arthropathy
,”
J. Shoulder Elbow Surg.
,
30
(
5
), pp.
1095
1106
.10.1016/j.jse.2020.07.043
27.
Burton
,
W. S.
,
Sintini
,
I.
,
Chavarria
,
J. M.
,
Brownhill
,
J. R.
, and
Laz
,
P. J.
,
2019
, “
Assessment of Scapular Morphology and Bone Quality With Statistical Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
4
), pp.
341
351
.10.1080/10255842.2018.1556260
28.
Soltanmohammadi
,
P.
,
Elwell
,
J.
,
Veeraraghavan
,
V.
,
Athwal
,
G. S.
, and
Willing
,
R.
,
2020
, “
Investigating the Effects of Demographics on Shoulder Morphology and Density Using Statistical Shape and Density Modeling
,”
ASME J. Biomech. Eng.
,
142
(
12
), p.
121005
.10.1115/1.4047664
29.
Nicolella
,
D. P.
, and
Bredbenner
,
T. L.
,
2012
, “
Development of a Parametric Finite Element Model of the Proximal Femur Using Statistical Shape and Density Modeling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
2
), pp.
101
110
.10.1080/10255842.2010.515984
30.
Soltanmohammadi
,
P.
,
2019
, “
Finite Element Analysis of Hollow-Stemmed Shoulder Implants in Different Bone Qualities Derived From a Statistical Shape and Density Model
,”
Master's thesis
, Western University Electronic Thesis and Dissertation Repository, London, ON, Canada.https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=9079&context=etd
31.
Campbell
,
J. Q.
, and
Petrella
,
A. J.
,
2016
, “
Automated Finite Element Modeling of the Lumbar Spine: Using a Statistical Shape Model to Generate a Virtual Population of Models
,”
J. Biomech.
,
49
(
13
), pp.
2593
2599
.10.1016/j.jbiomech.2016.05.013
32.
Bredbenner
,
T. L.
,
Mason
,
R. L.
,
Havill
,
L. M.
,
Orwoll
,
E. S.
, and
Nicolella
,
D. P.
, and
Osteoporotic Fractures in Men (MrOS) Study,
2014
, “
Fracture Risk Predictions Based on Statistical Shape and Density Modeling of the Proximal Femur
,”
J. Bone Miner. Res.
,
29
(
9
), pp.
2090
2100
.10.1002/jbmr.2241
33.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
Method for Registration of 3-D Shapes
,”
Proc. SPIE
1611
, pp.
586
606
.10.1117/12.57955
34.
Amberg
,
B.
,
Romdhani
,
S.
, and
Vetter
,
T.
,
2007
, “
Optimal Step Nonrigid ICP Algorithms for Surface Registration
,”
Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition
, Minneapolis, MN, June 17–22, pp.
1
8
.10.1109/CVPR.2007.383165
35.
Cootes
,
T.
, and
Taylor
,
C.
,
2004
, “
Statistical Models of Appearance for Computer Vision
,” The University of Manchester,
Manchester, UK
, Report No. 2004.https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/models/app_models.pdf
36.
Taylor
,
C.
,
Twining
,
C.
, and
Davies
,
R.
,
2008
, “
Evaluation of Statistical Models
,”
Statistical Models of Shape: Optimisation and Evaluation
,
Springer
,
London, UK
.
37.
Jacobson
,
A.
,
Gilot
,
G.
,
Hamilton
,
M.
,
Greene
,
A.
,
Flurin
,
P.-H.
,
Wright
,
T.
,
Zuckerman
,
J.
, and
Roche
,
C.
,
2015
, “
Glenohumeral Anatomic Study. A Comparison of Male and Female Shoulders With Similar Average Age and BMI
,”
Bull. Hosp. Jt. Dis.
,
73
(
Suppl. 1
), pp.
68
78
.https://pubmed.ncbi.nlm.nih.gov/26631200/
38.
Knowles
,
N. K.
,
Keener
,
J. D.
,
Ferreira
,
L. M.
, and
Athwal
,
G. S.
,
2015
, “
Quantification of the Position, Orientation, and Surface Area of Bone Loss in Type B2 Glenoids
,”
J. Shoulder Elbow Surg.
,
24
(
4
), pp.
503
510
.10.1016/j.jse.2014.08.021
39.
Knowles
,
N. K.
,
Ferreira
,
L. M.
, and
Athwal
,
G. S.
,
2016
, “
Premorbid Retroversion Is Significantly Greater in Type B2 Glenoids
,”
J. Shoulder Elbow Surg.
,
25
(
7
), pp.
1064
1068
.10.1016/j.jse.2015.11.002
40.
Boileau
,
P.
,
Gauci
,
M.-O.
,
Wagner
,
E. R.
,
Clowez
,
G.
,
Chaoui
,
J.
,
Chelli
,
M.
, and
Walch
,
G.
,
2019
, “
The Reverse Shoulder Arthroplasty Angle: A New Measurement of Glenoid Inclination for Reverse Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
28
(
7
), pp.
1281
1290
.10.1016/j.jse.2018.11.074
41.
Li
,
X.
,
Olszewski
,
N.
,
Abdul-Rassoul
,
H.
,
Curry
,
E. J.
,
Galvin
,
J. W.
, and
Eichinger
,
J. K.
,
2018
, “
Relationship Between the Critical Shoulder Angle and Shoulder Disease
,”
JBJS Rev.
,
6
(
8
), p.
e1
.10.2106/JBJS.RVW.17.00161
42.
Danckaers
,
F.
,
Huysmans
,
T.
,
Lacko
,
D.
,
Ledda
,
A.
,
Verwulgent
,
S.
,
Dongen
,
S. V.
, and
Sijbers
,
J.
,
2014
, “
Correspondence Preserving Elastic Surface Registration With Shape Model Prior
,”
Proceedings of the 2014 22nd International Conference on Pattern Recognition
, Stockholm, Sweden, Aug. 24–28, pp.
2143
2148
.10.1109/ICPR.2014.373
43.
Daalder
,
M. A.
,
Venne
,
G.
,
Sharma
,
V.
,
Rainbow
,
M.
,
Bryant
,
T.
, and
Bicknell
,
R. T.
,
2018
, “
Trabecular Bone Density Distribution in the Scapula Relevant to Reverse Shoulder Arthroplasty
,”
JSES Open Access
,
2
(
3
), pp.
174
181
.10.1016/j.jses.2018.06.002
44.
Fat
,
D. L.
,
Kennedy
,
J.
,
Galvin
,
R.
,
O'Brien
,
F.
,
Grath
,
F. M.
, and
Mullett
,
H.
,
2012
, “
The Hounsfield Value for Cortical Bone Geometry in the Proximal Humerus—An In Vitro Study
,”
Skeletal Radiol.
,
41
(
5
), pp.
557
568
.10.1007/s00256-011-1255-7
You do not currently have access to this content.