Abstract

Tracheal collapsibility is a dynamic process altering local airflow dynamics. Patient-specific simulation is a powerful technique to explore the physiological and pathological characteristics of human airways. One of the key considerations in implementing airway computations is choosing the right inlet boundary conditions that can act as a surrogate model for understanding realistic airflow simulations. To this end, we numerically examine airflow patterns under the influence of different profiles, i.e., flat, parabolic, and Womersley, and compare these with a realistic inlet obtained from experiments. Simulations are performed in ten patient-specific cases with normal and rapid breathing rates during the inhalation phase of the respiration cycle. At normal breathing, velocity and vorticity contours reveal primary flow structures on the sagittal plane that impart strength to cross-plane vortices. Rapid breathing, however, encounters small recirculation zones. Quantitative flow metrics are evaluated using time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Overall, the flow metrics encountered in a real velocity profile are in close agreement with parabolic and Womersley profiles for normal conditions, however, the Womersley inlet alone conforms to a realistic profile under rapid breathing conditions.

References

1.
Ferkol
,
T.
, and
Schraufnagel
,
D.
,
2014
, “
The Global Burden of Respiratory Disease
,”
Ann. Am. Thorac. Soc.
,
11
(
3
), pp.
404
406
.10.1513/AnnalsATS.201311-405PS
2.
WHO
,
2021
, “
Chronic Obstructive Pulmonnary Disease (COPD)
,”
World Health Organization
,
Geneva, Switzerland
, accessed Mar. 21, 2021, https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
3.
Lee
,
K. S.
,
Sun
,
M. R.
,
Ernst
,
A.
,
Feller-Kopman
,
D.
,
Majid
,
A.
, and
Boiselle
,
P. M.
,
2007
, “
Comparison of Dynamic Expiratory CT With Bronchoscopy for Diagnosing Airway Malacia: A Pilot Evaluation
,”
Chest
,
131
(
3
), pp.
758
764
.10.1378/chest.06-2164
4.
Carden
,
K. A.
,
Boiselle
,
P. M.
,
Waltz
,
D. A.
, and
Ernst
,
A.
,
2005
, “
Tracheomalacia and Tracheobronchomalacia in Children and Adults: An in-Depth Review
,”
Chest
,
127
(
3
), pp.
984
1005
.10.1378/chest.127.3.984
5.
Bhatt
,
S. P.
,
Terry
,
N. L. J.
,
Nath
,
H.
,
Zach
,
J. A.
,
Tschirren
,
J.
,
Bolding
,
M. S.
,
Stinson
,
D. S.
, et al.,
2016
, “
Association Between Expiratory Central Airway Collapse and Respiratory Outcomes Among Smokers
,”
JAMA
,
315
(
5
), pp.
498
505
.10.1001/jama.2015.19431
6.
Doi
,
K.
,
2005
, “
Current Status and Future Potential of Computer-Aided Diagnosis in Medical Imaging
,”
Brit. J. Radiol.
,
78
(
suppl_1
), pp.
s3
s19
.10.1259/bjr/82933343
7.
Ranu
,
H.
,
Wilde
,
M.
, and
Madden
,
B.
,
2011
, “
Pulmonary Function Tests
,”
Ulst. Med. J.
,
80
(
2
), pp.
84
90
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229853/
8.
Calmet
,
H.
,
Gambaruto
,
A. M.
,
Bates
,
A. J.
,
Vázquez
,
M.
,
Houzeaux
,
G.
, and
Doorly
,
D. J.
,
2016
, “
Large-Scale CFD Simulations of the Transitional and Turbulent Regime for the Large Human Airways During Rapid Inhalation
,”
Comput. Biol. Med.
,
69
, pp.
166
180
.10.1016/j.compbiomed.2015.12.003
9.
Liu
,
Y.
,
So
,
R.
, and
Zhang
,
C.
,
2003
, “
Modeling the Bifurcating Flow in an Asymmetric Human Lung Airway
,”
J. Biomech.
,
36
(
7
), pp.
951
959
.10.1016/S0021-9290(03)00064-2
10.
Malvè
,
M.
,
Chandra
,
S.
,
López-Villalobos
,
J. L.
,
Finol
,
E. A.
,
Ginel
,
A.
, and
Doblaré
,
M.
,
2013
, “
CFD Analysis of the Human Airways Under Impedance-Based Boundary Conditions: Application to Healthy, Diseased and Stented Trachea
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
2
), pp.
198
216
.10.1080/10255842.2011.615743
11.
Qi
,
S.
,
Zhang
,
B.
,
Yue
,
Y.
,
Shen
,
J.
,
Teng
,
Y.
,
Qian
,
W.
, and
Wu
,
J.
,
2018
, “
Airflow in Tracheobronchial Tree of Subjects With Tracheal Bronchus Simulated Using CT Image Based Models and CFD Method
,”
J. Med. Syst.
,
42
(
4
), pp.
1
15
.10.1007/s10916-017-0879-0
12.
Van Ertbruggen
,
C.
,
Hirsch
,
C.
, and
Paiva
,
M.
,
2005
, “
Anatomically Based Three-Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics
,”
J. Appl. Physiol.
,
98
(
3
), pp.
970
980
.10.1152/japplphysiol.00795.2004
13.
Gunatilaka
,
C. C.
,
Schuh
,
A.
,
Higano
,
N. S.
,
Woods
,
J. C.
, and
Bates
,
A. J.
,
2020
, “
The Effect of Airway Motion and Breathing Phase During Imaging on CFD Simulations of Respiratory Airflow
,”
Comput. Biol. Med.
,
127
, p.
104099
.10.1016/j.compbiomed.2020.104099
14.
Weibel
,
E. R.
,
Cournand
,
A. F.
, and
Richards
,
D. W.
,
1963
,
Morphometry of the Human Lung
, Vol.
1
,
Springer
, Berlin.
15.
Gaddam
,
M. G.
, and
Santhanakrishnan
,
A.
,
2021
, “
Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow
,”
Fluids
,
6
(
6
), p.
221
.10.3390/fluids6060221
16.
Wedel
,
J.
,
Steinmann
,
P.
,
Štrakl
,
M.
,
Hriberšek
,
M.
,
Cui
,
Y.
, and
Ravnik
,
J.
,
2022
, “
Anatomy Matters: The Role of the Subject-Specific Respiratory Tract on Aerosol Deposition—A CFD Study
,”
Comput. Methods Appl. Mech. Eng.
,
401
, p.
115372
.10.1016/j.cma.2022.115372
17.
Stylianou
,
F. S.
,
Sznitman
,
J.
, and
Kassinos
,
S. C.
,
2016
, “
Direct Numerical Simulation of Particle Laden Flow in a Human Airway Bifurcation Model
,”
Int. J. Heat Fluid Flow
,
61
, pp.
677
710
.10.1016/j.ijheatfluidflow.2016.07.013
18.
Campbell
,
I. C.
,
Ries
,
J.
,
Dhawan
,
S. S.
,
Quyyumi
,
A. A.
,
Taylor
,
W. R.
, and
Oshinski
,
J. N.
,
2012
, “
Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051001
.10.1115/1.4006681
19.
Wei
,
Z. A.
,
Huddleston
,
C.
,
Trusty
,
P. M.
,
Singh-Gryzbon
,
S.
,
Fogel
,
M. A.
,
Veneziani
,
A.
, and
Yoganathan
,
A. P.
,
2019
, “
Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics
,”
Ann. Biomed. Eng.
,
47
(
11
), pp.
2258
2270
.10.1007/s10439-019-02307-z
20.
Jalal
,
S.
,
Van de Moortele
,
T.
,
Nemes
,
A.
,
Amili
,
O.
, and
Coletti
,
F.
,
2018
, “
Three-Dimensional Steady and Oscillatory Flow in a Double Bifurcation Airway Model
,”
Phys. Rev. Fluids
,
3
(
10
), p.
103101
.10.1103/PhysRevFluids.3.103101
21.
Regan
,
E. A.
,
Hokanson
,
J. E.
,
Murphy
,
J. R.
,
Make
,
B.
,
Lynch
,
D. A.
,
Beaty
,
T. H.
,
Curran-Everett
,
D.
,
Silverman
,
E. K.
, and
Crapo
,
J. D.
,
2011
, “
Genetic Epidemiology of COPD (COPDGene) Study Design
,”
COPD J. Chronic Obstr. Pulm. Dis.
,
7
(
1
), pp.
32
43
.10.3109/15412550903499522
22.
Luo
,
H. Y.
, and
Liu
,
Y.
,
2008
, “
Modeling the Bifurcating Flow in a CT-Scanned Human Lung Airway
,”
J. Biomech.
,
41
(
12
), pp.
2681
2688
.10.1016/j.jbiomech.2008.06.018
23.
Sharp
,
J. T.
,
1959
, “
The Effect of Body Position Change on Lung Compliance in Normal Subjects and in Patients With Congestive Heart Failure
,”
J. Clin. Investig.
,
38
(
4
), pp.
659
667
.10.1172/JCI103844
24.
Shang
,
Y.
,
Dong
,
J.
,
Tian
,
L.
,
Inthavong
,
K.
, and
Tu
,
J.
,
2019
, “
Detailed Computational Analysis of Flow Dynamics in an Extended Respiratory Airway Model
,”
Clin. Biomech.
,
61
, pp.
105
111
.10.1016/j.clinbiomech.2018.12.006
25.
Cebral
,
J. R.
, and
Summers
,
R. M.
,
2004
, “
Tracheal and Central Bronchial Aerodynamics Using Virtual Bronchoscopy and Computational Fluid Dynamics
,”
IEEE Trans. Med. Imag.
,
23
(
8
), pp.
1021
1033
.10.1109/TMI.2004.828680
26.
dSuri
,
J. S.
,
Pattichis
,
C. S.
,
Li
,
C.
,
Macione
,
J.
,
Yang
,
Z.
,
Fox
,
M. D.
,
Wu
,
D.
, and
Laxminarayan
,
S.
,
2005
, “
Plaque Imaging Using Ultrasound, Magnetic Resonance and Computer Tomography: A Review
,”
Stud. Health Technol. Inform.
,
113
, pp.
1
25
.https://pubmed.ncbi.nlm.nih.gov/15923735/
27.
Lambert
,
A. R.
,
Lin
,
C.-L.
,
Mardorf
,
E.
, and
O'shaughnessy
,
P.
,
2010
, “
CFD Simulation of Contaminant Decay for High Reynolds Flow in a Controlled Environment
,”
Ann. Occup. Hyg.
,
54
(
1
), pp.
88
99
.10.1093/annhyg/mep057
28.
Rahimi-Gorji
,
M.
,
Gorji
,
T. B.
, and
Gorji-Bandpy
,
M.
,
2016
, “
Details of Regional Particle Deposition and Airflow Structures in a Realistic Model of Human Tracheobronchial Airways: Two-Phase Flow Simulation
,”
Comput. Biol. Med.
,
74
, pp.
1
17
.10.1016/j.compbiomed.2016.04.017
29.
Kolanjiyil
,
A. V.
, and
Kleinstreuer
,
C.
,
2013
, “
Nanoparticle Mass Transfer From Lung Airways to Systemic Regions—Part I: Whole-Lung Aerosol Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121003
.10.1115/1.4025332
30.
Hofmann
,
W.
,
2011
, “
Modelling Inhaled Particle Deposition in the Human Lung—A Review
,”
J. Aerosol Sci
,.,
42
(
10
), pp.
693
724
.10.1016/j.jaerosci.2011.05.007
31.
Farghadan
,
A.
,
Poorbahrami
,
K.
,
Jalal
,
S.
,
Oakes
,
J. M.
,
Coletti
,
F.
, and
Arzani
,
A.
,
2020
, “
Particle Transport and Deposition Correlation With Near-Wall Flow Characteristic Under Inspiratory Airflow in Lung Airways
,”
Comput. Biol. Med.
,
120
, p.
103703
.10.1016/j.compbiomed.2020.103703
32.
Green
,
A.
,
2004
, “
Modelling of Peak-Flow Wall Shear Stress in Major Airways of the Lung
,”
J. Biomech.
,
37
(
5
), pp.
661
667
.10.1016/j.jbiomech.2003.09.024
33.
Button
,
B.
, and
Boucher
,
R. C.
,
Group, U. o. N. C. V. L.
,
2008
, “
Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates
,”
Respir. Physiol. Neurobiol.
,
163
(
1–3
), pp.
189
201
.10.1016/j.resp.2008.04.020
34.
Piemjaiswang
,
R.
,
Shiratori
,
S.
,
Chaiwatanarat
,
T.
,
Piumsomboon
,
P.
, and
Chalermsinsuwan
,
B.
,
2019
, “
Computational Fluid Dynamics Simulation of Full Breathing Cycle for Aerosol Deposition in Trachea: Effect of Breathing Frequency
,”
J. Taiwan Inst. Chem. Eng.
,
97
, pp.
66
79
.10.1016/j.jtice.2019.02.005
35.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
36.
Ragnarsdóttir
,
M.
, and
Kristinsdóttir
,
E. K.
,
2006
, “
Breathing Movements and Breathing Patterns Among Healthy Men and Women 20–69 Years of Age
,”
Respiration
,
73
(
1
), pp.
48
54
.10.1159/000087456
37.
Myers
,
J.
,
Moore
,
J.
,
Ojha
,
M.
,
Johnston
,
K.
, and
Ethier
,
C.
,
2001
, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
,
29
(
2
), pp.
109
120
.10.1114/1.1349703
38.
Boutsianis
,
E.
,
Gupta
,
S.
,
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2008
, “
Boundary Conditions by Schwarz-Christoffel Mapping in Anatomically Accurate Hemodynamics
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
2068
2084
.10.1007/s10439-008-9571-3
You do not currently have access to this content.