Abstract

Detection and imaging of viruses in a complex solution is particularly significant for virology and requires a comprehensive understanding of biosensors. While lab-on-a-chip systems are used in virus detection as biosensors, analysis and optimization of these systems are especially challenging due to the size of the system to be used in the certain application. The system of interest for virus detection is required to be cost efficient and is also needed to be able to easily operable with a simple setup. Moreover, the detailed analysis of these microfluidic systems should be made with precision in order to predict the capabilities and the efficiency of the system accurately. This paper reports on the use of a common commercial computational fluid dynamics (cfd) software for the analysis of a microfluidic lab-on-a-chip virus detection cartridge. This study evaluates the problems commonly encountered during microfluidic applications of cfd softwares particularly in the area of reaction modeling of the antigen–antibody interaction. cfd analysis is later validated and combined with experiments to optimize the amount of dilute solution used in the tests. Thereafter, the geometry of the microchannel is also optimized and optimal test conditions are set for a cost efficient and effective virus detection kit using light microscopy.

References

1.
González
,
J. M.
,
Shelton
,
W. A.
,
Vallejo
,
M. D.
,
Castellanos
,
V. E. R.
,
Zuluaga
,
J. I. M.
,
Chamorro
,
D.
, and
Ariza
,
D. A.
,
2020
, “
Analysis of Commercial Assays for the Detection of SARS-CoV-2 Antibodies or Antigens
,”
Open J. Immunol.
,
10
(
2
), pp.
21
35
.10.4236/oji.2020.102003
2.
Sheikhzadeh
,
E.
,
Shimaa
,
E.
,
Aziah
,
I.
, and
Mohammed
,
Z.
,
2020
, “
Diagnostic Techniques for COVID-19 and New Developments
,”
Talanta
,
220
, p.
121392
.10.1016/j.talanta.2020.121392
3.
Chaudhary
,
V. S.
,
Kumar
,
D.
, and
Kumar
,
S.
,
2021
, “
Gold-Immobilized Photonic Crystal Fiber-Based SPR Biosensor for Detection of Malaria Disease in Human Body
,”
IEEE Sens. J.
,
21
(
16
), pp.
17800
17807
.10.1109/JSEN.2021.3085829
4.
Daaboul
,
G. G.
,
Lopez
,
C. A.
,
Chinnala
,
J.
,
Goldberg
,
B. B.
,
Connor
,
J. H.
, and
Ünlü
,
M. S.
,
2014
, “
Digital Sensing and Sizing of Vesicular Stomatitis Virus Pseudotypes in Complex Media: A Model for Ebola and Marburg Detection
,”
ACS Nano
,
8
(
6
), pp.
6047
6055
.10.1021/nn501312q
5.
Chen
,
Y. T.
,
Lee
,
Y. C.
,
Lai
,
Y. H.
,
Lim
,
J. C.
,
Huang
,
N. T.
,
Lin
,
C. T.
, and
Huang
,
J. J.
,
2020
, “
Review of Integrated Optical Biosensors for Point-of-Care Applications
,”
Biosensors
,
10
(
12
), p.
209
.10.3390/bios10120209
6.
Qin
,
P.
,
Park
,
M.
,
Alfson
,
K. J.
,
Tamhankar
,
M.
,
Carrion
,
R.
,
Patterson
,
J. L.
, and
Griffiths
,
A.
, et al.,
2019
, “
Rapid and Fully Microfluidic Ebola Virus Detection With CRISPR-Cas13a
,”
ACS Sens.
,
4
(
4
), pp.
1048
1054
.10.1021/acssensors.9b00239
7.
Scherr
,
S. M.
,
Daaboul
,
G. G.
,
Trueb
,
J.
,
Sevenler
,
D.
,
Fawcett
,
H.
,
Goldberg
,
B.
, and
Connor
,
J. H.
, et al.,
2016
, “
Real-Time Capture and Visualization of Individual Viruses in Complex Media
,”
ACS Nano
,
10
(
2
), pp.
2827
2833
.10.1021/acsnano.5b07948
8.
Scherr
,
S. M.
,
2017
, “
Disposable Cartridge Based Platform for Real-Time Detection of Single Viruses in Solution
,”
Ph.D. dissertation
,
Boston University
, MA.https://open.bu.edu/handle/2144/23675
9.
Allen
,
S.
,
Chen
,
X.
,
Davies
,
J.
,
Davies
,
M. C.
,
Dawkes
,
A. C.
,
Edwards
,
J. C.
, and
Roberts
,
C. J.
, et al.,
1997
, “
Detection of Antigen−Antibody Binding Events With the Atomic Force Microscope
,”
Biochemistry
,
36
(
24
), pp.
7457
7463
.10.1021/bi962531z
10.
Schulte
,
T. H.
,
Bardell
,
R. L.
, and
Weigl
,
B. H.
,
2002
, “
Microfluidic Technologies in Clinical Diagnostics
,”
Clin. Chim. Acta
,
321
(
1–2
), pp.
1
10
.10.1016/S0009-8981(02)00093-1
11.
Glatzel
,
T.
,
Litterst
,
C.
,
Cupelli
,
C.
,
Lindemann
,
T.
,
Moosmann
,
C.
,
Niekrawietz
,
R.
, and
Streule
,
W.
, et al.,
2008
, “
Computational Fluid Dynamics (CFD) Software Tools for Microfluidic Applications – a Case Study
,”
Comput. Fluids
,
37
(
3
), pp.
218
235
.10.1016/j.compfluid.2007.07.014
12.
Bonamente
,
E.
,
Aquino
,
A.
,
Nicolini
,
A.
, and
Cotana
,
F.
,
2016
, “
Experimental Analysis and Process Modeling of Carbon Dioxide Removal Using Tuff
,”
Sustainability
,
8
(
12
), p.
1258
.10.3390/su8121258
13.
Işıl
,
Ç.
,
Yorulmaz
,
M.
,
Solmaz
,
B.
,
Turhan
,
A. B.
,
Yurdakul
,
C.
,
Ünlü
,
M. S.
, and
Özbay
,
E.
, et al.,
2018
, “
Resolution Enhancement of Wide-Field Interferometric Microscopy by Coupled Deep Autoencoders
,”
Appl. Opt.
,
57
(
10
), pp.
2545
2552
.10.1364/AO.57.002545
14.
Avcı
,
O.
,
Campana
,
M. I.
,
Yurdakul
,
C.
, and
Ünlü
,
M. S.
,
2017
, “
Pupil Function Engineering for Enhanced Nanoparticle Visibility in Wide-Field Interferometric Microscopy
,”
Optica
,
4
(
2
), pp.
247
254
.10.1364/OPTICA.4.000247
15.
Zimmerman
,
M.
,
Delamarche
,
E.
,
Wolf
,
M.
, and
Hunziker
,
P.
,
2005
, “
Modeling and Optimization of High-Sensitivity, Low-Volume Microfluidic-Based Surface Immunoassays
,”
Biomed. Microdevices
,
7
(
2
), pp.
99
110
.10.1007/s10544-005-1587-y
16.
Parsa
,
H.
,
Chin
,
C. D.
,
Mongkolwisetwara
,
P.
,
Lee
,
B. W.
,
Wang
,
J. J.
, and
Sia
,
S. K.
,
2008
, “
Effect of Volume- and Time-Based Constraints on Capture of Analytes in Microfluidic Heterogeneous Immunoassays
,”
Lab Chip
,
8
(
12
), pp.
2062
2070
.10.1039/b813350f
You do not currently have access to this content.