Abstract

In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion–extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F–E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg–105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.

References

1.
Howell
,
S. M.
,
Kuznik
,
K.
,
Hull
,
M. L.
, and
Siston
,
R. A.
,
2008
, “
Results of an Initial Experience With Custom-Fit Positioning Total Knee Arthroplasty in a Series of 48 Patients
,”
Orthopedics
,
31
(
9
), pp.
857
863
.10.3928/01477447-20080901-15
2.
Eckhoff
,
D.
,
Hogan
,
C.
,
DiMatteo
,
L.
,
Robinson
,
M.
, and
Bach
,
J.
,
2007
, “
Difference Between the Epicondylar and Cylindrical Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
461
, pp.
238
244
.10.1097/BLO.0b013e318112416b
3.
Rehder
,
U.
,
1983
, “
Morphometrical Studies on the Symmetry of the Human Knee Joint: Femoral Condyles
,”
J Biomech.
,
16
(
5
), pp.
351
361
.10.1016/0021-9290(83)90019-2
4.
Rostlund
,
T.
,
Carlsson
,
L.
,
Albrektsson
,
B.
, and
Albrektsson
,
T.
,
1989
, “
Morphometrical Studies of Human Femoral Condyles
,”
J. Biomed. Eng.
,
11
(
6
), pp.
442
448
.10.1016/0141-5425(89)90037-X
5.
Kosel
,
J.
,
Giouroudi
,
I.
,
Scheffer
,
C.
,
Dillon
,
E.
, and
Erasmus
,
P.
,
2010
, “
Anatomical Study of the Radius and Center of Curvature of the Distal Femoral Condyle
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091002
.10.1115/1.4002061
6.
Nuño
,
N.
, and
Ahmed
,
A. M.
,
2001
, “
Sagittal Profile of the Femoral Condyles and Its Application to Femorotibial Contact Analysis
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
18
26
.10.1115/1.1339819
7.
Asano
,
T.
,
Akagi
,
M.
,
Tanaka
,
K.
,
Tamura
,
J.
, and
Nakamura
,
T.
,
2001
, “
In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique
,”
Clin. Orthop. Relat. Res.
,
388
, pp.
157
166
.10.1097/00003086-200107000-00023
8.
Elias
,
S. G.
,
Freeman
,
M. A.
, and
Gokcay
,
E. I.
,
1990
, “
A Correlative Study of the Geometry and Anatomy of the Distal Femur
,”
Clin. Orthop. Relat. Res.
,
260
, pp.
98
103
.10.1097/00003086-199011000-00018
9.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.10.1097/00003086-199305000-00033
10.
Howell
,
S. M.
,
Howell
,
S. J.
, and
Hull
,
M. L.
,
2010
, “
Assessment of the Radii of the Medial and Lateral Femoral Condyles in Varus and Valgus Knees With Osteoarthritis
,”
J. Bone Jt. Surg Am.
,
92
(
1
), pp.
98
104
.10.2106/JBJS.H.01566
11.
Pinskerova
,
V.
,
Nemec
,
K.
, and
Landor
,
I.
,
2014
, “
Gender Differences in the Morphology of the Trochlea and the Distal Femur
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
22
(
10
), pp.
2342
2349
.10.1007/s00167-014-3186-z
12.
Hull
,
M. L.
,
2022
, “
Errors in Using Fixed Flexion Facet Centers to Determine Tibiofemoral Kinematics Increase Fourfold for Multi-Radius Femoral Component Designs With Early Versus Late Decreases in the Radius of Curvature
,”
Knee
,
35
, pp.
183
191
.10.1016/j.knee.2022.02.011
13.
Shimizu
,
N.
,
Tomita
,
T.
,
Yamazaki
,
T.
,
Yoshikawa
,
H.
, and
Sugamoto
,
K.
,
2014
, “
In Vivo Movement of Femoral Flexion Axis of a Single-Radius Total Knee Arthroplasty
,”
J. Arthroplasty
,
29
(
12
), pp.
2407
2411
.10.1016/j.arth.2013.12.001
14.
Ng
,
J. W. G.
,
Bloch
,
B. V.
, and
James
,
P. J.
,
2019
, “
Sagittal Radius of Curvature, Trochlea Design and Ultracongruent Insert in Total Knee Arthroplasty
,”
EFORT Open Rev.
,
4
(
8
), pp.
519
524
.10.1302/2058-5241.4.180083
15.
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2013
, “
The Influence of Total Knee Arthroplasty Geometry on Mid-Flexion Stability: An Experimental and Finite Element Study
,”
J. Biomech.
,
46
(
7
), pp.
1351
1357
.10.1016/j.jbiomech.2013.01.025
16.
Nedopil
,
A. J.
,
Rego
,
E.
,
Hernandez
,
A. M.
,
Boone
,
J. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2024
, “
Correcting for Asymmetry of the Proximal Tibial Epiphysis is Warranted to Determine Postoperative Alignment Deviations in Kinematic Alignment From Planned Alignment of the Tibial Component on the Native Tibia
,”
Clin. Biomech.
,
113
, p.
106215
.10.1016/j.clinbiomech.2024.106215
17.
Chernov
,
N.
,
2023
, “
Circle Fit (Pratt Method)
,” MATLAB Central File Exchange, accessed July 3, 2024, https://www.mathworks.com/matlabcentral/fileexchange/22643-circle-fit-pratt-method
18.
Nicolet-Petersen
,
S.
,
Saiz
,
A.
,
Shelton
,
T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2020
, “
Small Differences in Tibial Contact Locations Following Kinematically Aligned TKA From the Native Contralateral Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
28
(
9
), pp.
2893
2904
.10.1007/s00167-019-05658-1
19.
Delman
,
C. M.
,
Ridenour
,
D.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2023
, “
The Posterolateral Upslope of a Low-Conforming Insert Blocks the Medial Pivot During a Deep Knee Bend in TKA: A Comparative Analysis of Two Implants With Different Insert Conformities
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
31
(
9
), pp.
3627
3636
.10.1007/s00167-021-06668-8
20.
Meneghini
,
R. M.
,
Ziemba-Davis
,
M. M.
,
Lovro
,
L. R.
,
Ireland
,
P. H.
, and
Damer
,
B. M.
,
2016
, “
Can Intraoperative Sensors Determine the “Target” Ligament Balance? Early Outcomes in Total Knee Arthroplasty
,”
J Arthroplasty
,
31
(
10
), pp.
2181
2187
.10.1016/j.arth.2016.03.046
21.
Roth
,
J. D.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2018
, “
Kinematically Aligned Total Knee Arthroplasty Limits High Tibial Forces, Differences in Tibial Forces Between Compartments, and Abnormal Tibial Contact Kinematics During Passive Flexion
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
26
(
6
), pp.
1589
1601
.10.1007/s00167-017-4670-z
22.
Roth
,
J. D.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2019
, “
Analysis of Differences in Laxities and Neutral Positions From Native After Kinematically Aligned TKA Using Cruciate Retaining Implants
,”
J. Orthop. Res.
,
37
(
2
), pp.
358
369
.10.1002/jor.24196
23.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
,
2005
, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
,
20
(
8
), pp.
1060
1067
.10.1016/j.arth.2004.08.005
24.
Eckhoff
,
D. G.
,
Bach
,
J. M.
,
Spitzer
,
V. M.
,
Reinig
,
K. D.
,
Bagur
,
M. M.
,
Baldini
,
T. H.
, and
Flannery
,
N. M.
,
2005
, “
Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality
,”
J. Bone Jt. Surg.
,
87
(
suppl_2
), pp.
71
80
.10.2106/JBJS.E.00440
25.
Pinskerova
,
V.
,
Johal
,
P.
,
Nakagawa
,
S.
,
Sosna
,
A.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M. A.
,
2004
, “
Does the Femur Roll-Back With Flexion?
,”
J. Bone Jt. Surg. Br. Vol.
,
86-B
(
6
), pp.
925
931
.10.1302/0301-620X.86B6.14589
26.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
111
118
.10.1097/00003086-199811000-00016
27.
Alesi
,
D.
,
Marcheggiani Muccioli
,
G. M.
,
Roberti di Sarsina
,
T.
,
Bontempi
,
M.
,
Pizza
,
N.
,
Zinno
,
R.
,
Di Paolo
,
S.
,
Zaffagnini
,
S.
, and
Bragonzoni
,
L.
,
2021
, “
In Vivo Femorotibial Kinematics of Medial-Stabilized Total Knee Arthroplasty Correlates to Post-Operative Clinical Outcomes
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
29
(
2
), pp.
491
497
.10.1007/s00167-020-05975-w
28.
Elorza
,
S. P.
,
O'Donnell
,
E.
,
Delman
,
C.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2023
, “
Posterior Cruciate Ligament Retention With Medial Ball-in-Socket Conformity Promotes Internal Tibial Rotation and Knee Flexion While Providing High Clinical Outcome Scores
,”
Knee
,
43
, pp.
153
162
.10.1016/j.knee.2023.05.012
29.
Shimmin
,
A.
,
Martinez-Martos
,
S.
,
Owens
,
J.
,
Iorgulescu
,
A. D.
, and
Banks
,
S.
,
2015
, “
Fluoroscopic Motion Study Confirming the Stability of a Medial Pivot Design Total Knee Arthroplasty
,”
Knee
,
22
(
6
), pp.
522
526
.10.1016/j.knee.2014.11.011
30.
Steinbruck
,
A.
,
Schroder
,
C.
,
Woiczinski
,
M.
,
Fottner
,
A.
,
Pinskerova
,
V.
,
Muller
,
P. E.
, and
Jansson
,
V.
,
2016
, “
Femorotibial Kinematics and Load Patterns After Total Knee Arthroplasty: An In Vitro Comparison of Posterior-Stabilized Versus Medial-Stabilized Design
,”
Clin. Biomech.
,
33
, pp.
42
48
.10.1016/j.clinbiomech.2016.02.002
31.
Yin
,
L.
,
Chen
,
K.
,
Guo
,
L.
,
Cheng
,
L.
,
Wang
,
F.
, and
Yang
,
L.
,
2015
, “
Identifying the Functional Flexion-Extension Axis of the Knee: An in-Vivo Kinematics Study
,”
PLoS One
,
10
(
6
), p.
e0128877
.10.1371/journal.pone.0128877
32.
Kornaat
,
P. R.
,
Koo
,
S.
,
Andriacchi
,
T. P.
,
Bloem
,
J. L.
, and
Gold
,
G. E.
,
2006
, “
Comparison of Quantitative Cartilage Measurements Acquired on Two 3.0T MRI Systems From Different Manufacturers
,”
J. Magn. Reson. Imaging
,
23
(
5
), pp.
770
773
.10.1002/jmri.20561
You do not currently have access to this content.