Abstract

Numerical and analytical solutions were employed to calculate the radius of an amyloid-β (Aβ) plaque over time. To the author's knowledge, this study presents the first model simulating the growth of Aβ plaques. Findings indicate that the plaque can attain a diameter of 50 μm after 20 years of growth, provided the Aβ monomer degradation machinery is malfunctioning. A mathematical model incorporates nucleation and autocatalytic growth processes using the Finke–Watzky model. The resulting system of ordinary differential equations was solved numerically, and for the simplified case of infinitely long Aβ monomer half-life, an analytical solution was found. Assuming that Aβ aggregates stick together and using the distance between the plaques as an input parameter of the model, it was possible to calculate the plaque radius from the concentration of Aβ aggregates. This led to the “cube root hypothesis,” positing that Aβ plaque size increases proportionally to the cube root of time. This hypothesis helps explain why larger plaques grow more slowly. Furthermore, the obtained results suggest that the plaque size is independent of the kinetic constants governing Aβ plaque agglomeration, indicating that the kinetics of Aβ plaque agglomeration is not a limiting factor for plaque growth. Instead, the plaque growth rate is limited by the rates of Aβ monomer production and degradation.

References

1.
Rahman
,
M. M.
, and
Lendel
,
C.
,
2021
, “
Extracellular Protein Components of Amyloid Plaques and Their Roles in Alzheimer's Disease Pathology
,”
Mol. Neurodegener.
,
16
(
1
), p.
59
.10.1186/s13024-021-00465-0
2.
Cummings
,
J.
,
Zhou
,
Y.
,
Lee
,
G.
,
Zhong
,
K.
,
Fonseca
,
J.
, and
Cheng
,
F.
,
2023
, “
Alzheimer's Disease Drug Development Pipeline: 2023
,”
Alzheimer's Dementia: Transl. Res. Clin. Interventions
,
9
(
2
), p.
e12385
.10.1002/trc2.12385
3.
Maqbool
,
M.
,
Mobashir
,
M.
, and
Hoda
,
N.
,
2016
, “
Pivotal Role of Glycogen Synthase Kinase-3: A Therapeutic Target for Alzheimer's Disease
,”
Eur. J. Med. Chem.
,
107
, pp.
63
81
.10.1016/j.ejmech.2015.10.018
4.
Hung
,
S.
, and
Fu
,
W.
,
2017
, “
Drug Candidates in Clinical Trials for Alzheimer's Disease
,”
J. Biomed. Sci.
,
24
(
1
), p.
47
.10.1186/s12929-017-0355-7
5.
Chen
,
G.-F.
,
Xu
,
T.-H.
,
Yan
,
Y.
,
Zhou
,
Y.-R.
,
Jiang
,
Y.
,
Melcher
,
K.
, and
Xu
,
H. E.
,
2017
, “
Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development
,”
Acta Pharmacol. Sin.
,
38
(
9
), pp.
1205
1235
.10.1038/aps.2017.28
6.
Karran
,
E.
,
Mercken
,
M.
, and
De Strooper
,
B.
,
2011
, “
The Amyloid Cascade Hypothesis for Alzheimer's Disease: An Appraisal for the Development of Therapeutics
,”
Nat. Rev. Drug Discovery
,
10
(
9
), pp.
698
712
.10.1038/nrd3505
7.
Hardy
,
J. A.
, and
Higgins
,
G. A.
,
1992
, “
Alzheimers-Disease - the Amyloid Cascade Hypothesis
,”
Science
,
256
(
5054
), pp.
184
185
.10.1126/science.1566067
8.
Herrup
,
K.
,
2015
, “
The Case for Rejecting the Amyloid Cascade Hypothesis
,”
Nat. Neurosci.
,
18
(
6
), pp.
794
799
.10.1038/nn.4017
9.
Ricciarelli
,
R.
, and
Fedele
,
E.
,
2017
, “
The Amyloid Cascade Hypothesis in Alzheimer's Disease: It's Time to Change Our Mind
,”
Curr. Neuropharmacol.
,
15
(
6
), pp.
926
935
.10.2174/1570159X15666170116143743
10.
Peng
,
Y.
,
Jin
,
H.
,
Xue
,
Y.-H.
,
Chen
,
Q.
,
Yao
,
S.-Y.
,
Du
,
M.-Q.
, and
Liu
,
S.
,
2023
, “
Current and Future Therapeutic Strategies for Alzheimer's Disease: An Overview of Drug Development Bottlenecks
,”
Front. Aging Neurosci.
,
15
, p.
1206572
.10.3389/fnagi.2023.1206572
11.
Haass
,
C.
, and
Selkoe
,
D.
,
2022
, “
If Amyloid Drives Alzheimer Disease, Why Have Anti-Amyloid Therapies Not yet Slowed Cognitive Decline?
,”
PLOS Biol.
,
20
(
7
), p.
e3001694
.10.1371/journal.pbio.3001694
12.
Murphy
,
M. P.
, and
LeVine
,
H. 3.
,
2010
, “
Alzheimer's Disease and the Amyloid-Beta Peptide
,”
J. Alzheimer's Disease: JAD
,
19
(
1
), pp.
311
323
.10.3233/JAD-2010-1221
13.
Hardy
,
J.
, and
Selkoe
,
D. J.
,
2002
, “
The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics
,”
Science
,
297
(
5580
), pp.
353
356
.10.1126/science.1072994
14.
O'Brien
,
R. J.
, and
Wong
,
P. C.
,
2011
, “
Amyloid Precursor Protein Processing and Alzheimer's Disease
,”
Annu. Rev. Neurosci.
,
34
(
1
), pp.
185
204
.10.1146/annurev-neuro-061010-113613
15.
Selkoe
,
D. J.
, and
Hardy
,
J.
,
2016
, “
The Amyloid Hypothesis of Alzheimer's Disease at 25 years
,”
EMBO Mol. Med.
,
8
(
6
), pp.
595
608
.10.15252/emmm.201606210
16.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2018
, “
How the Formation of Amyloid Plaques and Neurofibrillary Tangles May Be Related – A Mathematical Modelling Study
,”
Proc. R. Soc. A
,
474
(
2210
), p.
20170777
.10.1098/rspa.2017.0777
17.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2018
, “
Simulating the Effect of Formation of Amyloid Plaques on Aggregation of Tau Protein
,”
Proc. R. Soc. A
,
474
(
2220
), p.
20180511
.10.1098/rspa.2018.0511
18.
Torok
,
J.
,
Maia
,
P. D.
,
Verma
,
P.
,
Mezias
,
C.
, and
Raj
,
A.
,
2021
, “
Emergence of Directional Bias in Tau Deposition From Axonal Transport Dynamics
,”
PLOS Comput. Biol.
,
17
(
7
), p.
e1009258
.10.1371/journal.pcbi.1009258
19.
Hampel
,
H.
,
Hardy
,
J.
,
Blennow
,
K.
,
Chen
,
C.
,
Perry
,
G.
,
Kim
,
S. H.
,
Villemagne
,
V. L.
, et al.,
2021
, “
The Amyloid-Β Pathway in Alzheimer's Disease
,”
Mol. Psychiatry
,
26
(
10
), pp.
5481
5503
.10.1038/s41380-021-01249-0
20.
Chow
,
V. W.
,
Mattson
,
M. P.
,
Wong
,
P. C.
, and
Gleichmann
,
M.
,
2010
, “
An Overview of APP Processing Enzymes and Products
,”
Neuromol. Med.
,
12
(
1
), pp.
1
12
.10.1007/s12017-009-8104-z
21.
MacLeod
,
R.
,
Hillert
,
E.-K.
,
Cameron
,
R. T.
, and
Baillie
,
G. S.
,
2015
, “
The Role and Therapeutic Targeting of Α-, Β- and Γ-Secretase in Alzheimer's Disease
,”
Future Sci. OA
,
1
(
3
), p.
FSO11
.10.4155/fso.15.9
22.
Morris
,
A. M.
,
Watzky
,
M. A.
,
Agar
,
J. N.
, and
Finke
,
R. G.
,
2008
, “
Fitting Neurological Protein Aggregation Kinetic Data Via a 2-Step, Minimal/“Ockham's Razor” Model: The Finke-Watzky Mechanism of Nucleation Followed by Autocatalytic Surface Growth
,”
Biochemistry
,
47
(
8
), pp.
2413
2427
.10.1021/bi701899y
23.
Iashchishyn
,
I. A.
,
Sulskis
,
D.
,
Nguyen Ngoc
,
M.
,
Smirnovas
,
V.
, and
Morozova-Roche
,
L. A.
,
2017
, “
Finke-Watzky Two-Step Nucleation-Autocatalysis Model of S100A9 Amyloid Formation: Protein Misfolding as “Nucleation” Event
,”
ACS Chem. Neurosci.
,
8
(
10
), pp.
2152
2158
.10.1021/acschemneuro.7b00251
24.
Thacker
,
D.
,
Barghouth
,
M.
,
Bless
,
M.
,
Zhang
,
E.
, and
Linse
,
S.
,
2023
, “
Direct Observation of Secondary Nucleation Along the Fibril Surface of the Amyloid Β 42 Peptide
,”
Proc. Natl. Acad. Sci.
,
120
(
25
), p.
e2220664120
.10.1073/pnas.2220664120
25.
Bieschke
,
J.
,
Zhang
,
Q.
,
Powers
,
E. T.
,
Lerner
,
R. A.
, and
Kelly
,
J. W.
,
2005
, “
Oxidative Metabolites Accelerate Alzheimer's Amyloidogenesis by a Two-Step Mechanism, Eliminating the Requirement for Nucleation
,”
Biochemistry
,
44
(
13
), pp.
4977
4983
.10.1021/bi0501030
26.
Vestergaard
,
M.
,
Kerman
,
K.
,
Saito
,
M.
,
Nagatani
,
N.
,
Takamura
,
Y.
, and
Tamiya
,
E.
,
2005
, “
A Rapid Label-Free Electrochemical Detection and Kinetic Study of Alzheimer's Amyloid Beta Aggregation
,”
J. Am. Chem. Soc.
,
127
(
34
), pp.
11892
11893
.10.1021/ja052522q
27.
Cruz
,
L.
,
Urbanc
,
B.
,
Buldyrev
,
S. V.
,
Christie
,
R.
,
Gómez-Isla
,
T.
,
Havlin
,
S.
,
McNamara
,
M.
,
Stanley
,
H. E.
, and
Hyman
,
B. T.
,
1997
, “
Aggregation and Disaggregation of Senile Plaques in Alzheimer Disease
,”
Proc. Natl. Acad. Sci.
,
94
(
14
), pp.
7612
7616
.10.1073/pnas.94.14.7612
28.
Haass
,
C.
,
Kaether
,
C.
,
Thinakaran
,
G.
, and
Sisodia
,
S.
,
2012
, “
Trafficking and Proteolytic Processing of APP
,”
Cold Spring Harbor Perspect. Med.
,
2
(
5
), p.
a006270
.10.1101/cshperspect.a006270
29.
Masters
,
C. L.
, and
Selkoe
,
D. J.
,
2012
, “
Biochemistry of Amyloid Β-Protein and Amyloid Deposits in Alzheimer Disease
,”
Cold Spring Harbor Perspect. Med.
,
2
(
6
), p.
a006262
.10.1101/cshperspect.a006262
30.
Dawkins
,
E.
,
Derks
,
R. J. E.
,
Schifferer
,
M.
,
Trambauer
,
J.
,
Winkler
,
E.
,
Simons
,
M.
,
Paquet
,
D.
,
Giera
,
M.
,
Kamp
,
F.
, and
Steiner
,
H.
,
2023
, “
Membrane Lipid Remodeling Modulates Γ-Secretase Processivity
,”
J. Biol. Chem.
,
299
(
4
), p.
103027
.10.1016/j.jbc.2023.103027
31.
Madrasi
,
K.
,
Das
,
R.
,
Mohmmadabdul
,
H.
,
Lin
,
L.
,
Hyman
,
B. T.
,
Lauffenburger
,
D. A.
,
Albers
,
M. W.
, et al.,
2021
, “
Systematic in Silico Analysis of Clinically Tested Drugs for Reducing Amyloid-Beta Plaque Accumulation in Alzheimer's Disease
,”
Alzheimer's Dementia
,
17
(
9
), pp.
1487
1498
.10.1002/alz.12312
32.
Tandan
,
A. G.
,
2022
, “
A Brief Note on Amyloid Plaque
,”
Global J. Neurol. Neurosurg.
,
10
(
1
), pp.
3
4
.
33.
Querol-Vilaseca
,
M.
,
Colom-Cadena
,
M.
,
Pegueroles
,
J.
,
Nuñez-Llaves
,
R.
,
Luque-Cabecerans
,
J.
,
Muñoz-Llahuna
,
L.
,
Andilla
,
J.
, et al.,
2019
, “
Nanoscale Structure of Amyloid-Β Plaques in Alzheimer's Disease
,”
Sci. Rep.
,
9
(
1
), p.
5181
.10.1038/s41598-019-41443-3
34.
Raskatov
,
J. A.
,
2019
, “
What is the “Relevant” Amyloid β42 Concentration?
,”
ChemBioChem
,
20
(
13
), pp.
1725
1726
.10.1002/cbic.201900097
35.
Waters
,
J.
,
2010
, “
The Concentration of Soluble Extracellular Amyloid-Beta Protein in Acute Brain Slices From CRND8 Mice
,”
PLOS One
,
5
(
12
), p.
e15709
.10.1371/journal.pone.0015709
36.
Cavicchi
,
R. E.
,
King
,
J.
, and
Ripple
,
D. C.
,
2018
, “
Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis
,”
J. Pharm. Sci.
,
107
(
5
), pp.
1304
1312
.10.1016/j.xphs.2018.01.013
37.
Gu
,
L.
, and
Guo
,
Z.
,
2021
, “
Alzheimer's Aβ42 and Aβ40 Form Mixed Oligomers With Direct Molecular Interactions
,”
Biochem. Biophys. Res. Commun.
,
534
, pp.
292
296
.10.1016/j.bbrc.2020.11.092
38.
Hori
,
Y.
,
Takeda
,
S.
,
Cho
,
H.
,
Wegmann
,
S.
,
Shoup
,
T. M.
,
Takahashi
,
K.
,
Irimia
,
D.
,
Elmaleh
,
D. R.
,
Hyman
,
B. T.
, and
Hudry
,
E.
,
2015
, “
A Food and Drug Administration-Approved Asthma Therapeutic Agent Impacts Amyloid Β in the Brain in a Transgenic Model of Alzheimer Disease
,”
J. Biol. Chem.
,
290
(
4
), pp.
1966
1978
.10.1074/jbc.M114.586602
39.
Kostylev
,
M. A.
,
Kaufman
,
A. C.
,
Nygaard
,
H. B.
,
Patel
,
P.
,
Haas
,
L. T.
,
Gunther
,
E. C.
,
Vortmeyer
,
A.
, and
Strittmatter
,
S. M.
,
2015
, “
Prion-Protein-Interacting Amyloid-Β Oligomers of High Molecular Weight Are Tightly Correlated With Memory Impairment in Multiple Alzheimer Mouse Models
,”
J. Biol. Chem.
,
290
(
28
), pp.
17415
17438
.10.1074/jbc.M115.643577
40.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2022
, “
An Analytical Solution Simulating Growth of Lewy Bodies
,”
Math. Med. Biol.: J. IMA
,
39
(
3
), pp.
299
312
.10.1093/imammb/dqac006
41.
Watzky
,
M. A.
,
Finney
,
E. E.
, and
Finke
,
R. G.
,
2008
, “
Transition-Metal Nanocluster Size vs Formation Time and the Catalytically Effective Nucleus Number: A Mechanism-Based Treatment
,”
J. Am. Chem. Soc.
,
130
(
36
), pp.
11959
11969
.10.1021/ja8017412
42.
Yan
,
P.
,
Bero
,
A. W.
,
Cirrito
,
J. R.
,
Xiao
,
Q.
,
Hu
,
X.
,
Wang
,
Y.
,
Gonzales
,
E.
,
Holtzman
,
D. M.
, and
Lee
,
J.-M.
,
2009
, “
Characterizing the Appearance and Growth of Amyloid Plaques in APP/PS1 Mice
,”
J. Neurosci.
,
29
(
34
), pp.
10706
10714
.10.1523/JNEUROSCI.2637-09.2009
43.
Meyer-Luehmann
,
M.
,
Spires-Jones
,
T. L.
,
Prada
,
C.
,
Garcia-Alloza
,
M.
,
de Calignon
,
A.
,
Rozkalne
,
A.
,
Koenigsknecht-Talboo
,
J.
,
Holtzman
,
D. M.
,
Bacskai
,
B. J.
, and
Hyman
,
B. T.
,
2008
, “
Rapid Appearance and Local Toxicity of Amyloid-Beta Plaques in a Mouse Model of Alzheimer's Disease
,”
Nature
,
451
(
7179
), pp.
720
724
.10.1038/nature06616
44.
Burgold
,
S.
,
Filser
,
S.
,
Dorostkar
,
M. M.
,
Schmidt
,
B.
, and
Herms
,
J.
,
2014
, “
In Vivo Imaging Reveals Sigmoidal Growth Kinetic of Β-Amyloid Plaques
,”
Acta Neuropathol. Commun.
,
2
(
1
), p.
30
.10.1186/2051-5960-2-30
45.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Science and Engineering
,
Wiley
,
Hoboken, NJ
.
46.
Zadeh
,
K. S.
, and
Montas
,
H. J.
,
2010
, “
A Class of Exact Solutions for Biomacromolecule Diffusion-Reaction in Live Cells
,”
J. Theor. Biol.
,
264
(
3
), pp.
914
933
.10.1016/j.jtbi.2010.03.028
47.
Zi
,
Z.
,
2011
, “
Sensitivity Analysis Approaches Applied to Systems Biology Models
,”
IET Syst. Biol.
,
5
(
6
), pp.
336
346
.10.1049/iet-syb.2011.0015
48.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2019
, “
Investigating Sensitivity Coefficients Characterizing the Response of a Model of Tau Protein Transport in an Axon to Model Parameters
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
1
), pp.
71
83
.10.1080/10255842.2018.1534233
49.
Kacser
,
H.
,
Burns
,
J. A.
,
Kacser
,
H.
, and
Fell
,
D. A.
,
1995
, “
The Control of Flux
,”
Biochem. Soc. Trans.
,
23
(
2
), pp.
341
366
.10.1042/bst0230341
50.
Orr
,
M. E.
, and
Oddo
,
S.
,
2013
, “
Autophagic/Lysosomal Dysfunction in Alzheimer's Disease
,”
Alzheimer's Res. Ther.
,
5
(
5
), p.
53
.10.1186/alzrt217
51.
Ntsapi
,
C.
,
Lumkwana
,
D.
, and
Swart
,
C.
,
2018
, “
Chapter Seven - New Insights Into Autophagy Dysfunction Related to Amyloid Beta Toxicity and Neuropathology in Alzheimer's Disease
,”
International Review of Cell and Molecular Biology
,
L.
Galluzzi
, ed.,
Elsevier, Amsterdam, The Netherlands
, pp.
321
361
.
52.
Harris
,
L. D.
,
Jasem
,
S.
, and
Licchesi
,
J. D. F.
,
2020
, “
The Ubiquitin System in Alzheimer's Disease
,”
Adv. Exp. Med. Biol.
,
1233
, pp.
195
221
.10.1007/978-3-030-38266-7
53.
Saido
,
T.
, and
Leissring
,
M. A.
,
2012
, “
Proteolytic Degradation of Amyloid Β-Protein
,”
Cold Spring Harbor Perspect. Med.
,
2
(
6
), p.
a006379
.10.1101/cshperspect.a006379
54.
Yuan
,
M.
,
Wang
,
Y.
,
Huang
,
Z.
,
Jing
,
F.
,
Qiao
,
P.
,
Zou
,
Q.
,
Li
,
J.
, and
Cai
,
Z.
,
2023
, “
Impaired Autophagy in Amyloid-Beta Pathology: A Traditional Review of Recent Alzheimer's Research
,”
J. Biomed. Res.
,
37
(
1
), pp.
30
46
.10.7555/JBR.36.20220145
55.
Itoh
,
S. G.
,
Yagi-Utsumi
,
M.
,
Kato
,
K.
, and
Okumura
,
H.
,
2022
, “
Key Residue for Aggregation of Amyloid-Β Peptides
,”
ACS Chem. Neurosci.
,
13
(
22
), pp.
3139
3151
.10.1021/acschemneuro.2c00358
56.
Zaretsky
,
D. V.
,
Zaretskaia
,
M. V.
, and
Molkov
,
Y. I.
, and
for the Alzheimer's Disease Neuroimaging Initiative
,
2022
, “
Patients With Alzheimer's Disease Have an Increased Removal Rate of Soluble Beta-Amyloid-42
,”
PLOS One
,
17
(
10
), p.
e0276933
.10.1371/journal.pone.0276933
57.
Kuznetsov
,
A. V.
,
2023
, “
Effect of Diffusivity of Amyloid Beta Monomers on the Formation of Senile Plaques
,” bioRxiv,
2023.07.31.551367
.10.1101/2023.07.31.551367
58.
Handwerk
,
D. R.
,
Shipman
,
P. D.
,
Whitehead
,
C. B.
,
Özkar
,
S.
, and
Finke
,
R. G.
,
2020
, “
Particle Size Distributions Via Mechanism-Enabled Population Balance Modeling
,”
J. Phys. Chem. C
,
124
(
8
), pp.
4852
4880
.10.1021/acs.jpcc.9b11239
59.
Yokoyama
,
M.
,
Kobayashi
,
H.
,
Tatsumi
,
L.
, and
Tomita
,
T.
,
2022
, “
Mouse Models of Alzheimer's Disease
,”
Front. Mol. Neurosci.
,
15
, p.
912995
.10.3389/fnmol.2022.912995
You do not currently have access to this content.