Abstract

Multidirectional load transmission ability by annulus fibrosus (AF) requires substantial mechanical stability. Additionally, AF exhibits a unique biochemical concentration gradient with outer AF (OA) dominated by type I collagen (COL-I) and inner AF dominated by type II collagen (COL-II) with higher water and proteoglycan concentration. This indicates an intricate relationship between biochemistry and mechanical stability, which remains unclear. This study uses molecular dynamics (MD) simulations to investigate the impact of water, COL-I and COL-II, concentration gradients on mechanical stability of AF's collagen–hyaluronan (COL–HYL) nano-interfaces during tensile and compressive deformation. For this, COL–HYL atomistic models are created by increasing COL-II concentrations from 0% to 75% and water from 65% to 75%. Additional tensile and compressive deformation simulations are conducted for COL-I–HYL interface (COL–HYL interfaces with 0% COL-II) by increasing water concentration from 65% to 75% to segregate the effects of increasing water concentration alone. Results show that increasing water concentration alone to 75% results in marginal changes in local hydration indicating increase in bulk water. This enhances HYL and COL segment sliding—leading to reduction in mechanical stability in tension, indicated by drop in stress–strain characteristics. Additionally, increase in bulk water shifts load-bearing characteristics toward water—leading to reduction in modulus from 3.7 GPa to 1.9 GPa. Conversely, increasing COL-II and water concentration facilitates stable water bridge formation which impedes sliding in HYL and COL—enhancing mechanical stability. These water bridges further improve compressive load sustenance leading to lower reduction in compressive modulus from 3.7 GPa to 2.8 GPa.

References

1.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
2.
Scott
,
J. E.
, and
Haigh
,
M.
,
1986
, “
Proteoglycan-Collagen Interactions in Intervertebral Disc. A Chondroitin Sulphate Proteoglycan Associates With Collagen Fibrils in Rabbit Annulus Fibrosus at the d-e Bands
,”
Biosci. Rep.
,
6
(
10
), pp.
879
888
.10.1007/BF01116241
3.
Stoeckelhuber
,
M.
,
Brueckner
,
S.
,
Spohr
,
G.
, and
Welsch
,
U.
,
2005
, “
Proteoglycans and Collagen in the Intervertebral Disc of the Rhesus Monkey (Macaca Mulatta)
,”
Ann. Anat. - Anat. Anz.
,
187
(
1
), pp.
35
42
.10.1016/j.aanat.2004.08.007
4.
Antoniou
,
J.
,
Steffen
,
T.
,
Nelson
,
F.
,
Winterbottom
,
N.
,
Hollander
,
A. P.
,
Poole
,
R. A.
,
Aebi
,
M.
, and
Alini
,
M.
,
1996
, “
The Human Lumbar Intervertebral Disc: Evidence for Changes in the Biosynthesis and Denaturation of the Extracellular Matrix With Growth, Maturation, Ageing, and Degeneration
,”
J. Clin. Invest.
,
98
(
4
), pp.
996
1003
.10.1172/JCI118884
5.
Schollmeier
,
G.
,
Lahr-Eigen
,
R.
, and
Lewandrowski
,
K. U.
,
2000
, “
Observations on Fiber-Forming Collagens in the Anulus Fibrosus
,”
Spine
,
25
(
21
), pp.
2736
2741
.10.1097/00007632-200011010-00004
6.
Fratzl
,
P.
,
2008
, “
Collagen: Structure and Mechanics, an Introduction
,”
Collagen: Structure and Mechanics
,
Springer US
,
Boston
, MA, pp.
1
13
.
7.
Vergari
,
C.
,
Mansfield
,
J.
,
Meakin
,
J. R.
, and
Winlove
,
P. C.
,
2016
, “
Lamellar and Fibre Bundle Mechanics of the Annulus Fibrosus in Bovine Intervertebral Disc
,”
Acta Biomater.
,
37
, pp.
14
20
.10.1016/j.actbio.2016.04.002
8.
Tavakoli
,
J.
, and
Costi
,
J. J.
,
2018
, “
Ultrastructural Organization of Elastic Fibres in the Partition Boundaries of the Annulus Fibrosus Within the Intervertebral Disc
,”
Acta Biomater.
,
68
, pp.
67
77
.10.1016/j.actbio.2017.12.017
9.
Bhattacharya
,
S.
, and
Dubey
,
D. K.
,
2023
, “
A Multiscale Investigation Into the Role of Collagen-Hyaluronan Interface Shear on the Mechanical Behaviour of Collagen Fibers in Annulus Fibrosus—Molecular Dynamics-Cohesive Finite Element-Based Study
,”
J. Mech. Behav. Biomed. Mater.
,
147
, p.
106147
.10.1016/j.jmbbm.2023.106147
10.
Bruehlmann
,
S. B.
,
Matyas
,
J. R.
, and
Duncan
,
N. A.
,
2004
, “
ISSLS Prize Winner: Collagen Fibril Sliding Governs Cell Mechanics in the Anulus Fibrosus: An In Situ Confocal Microscopy Study of Bovine Discs
,”
Spine
,
29
(
23
), pp.
2612
2620
.10.1097/01.brs.0000146465.05972.56
11.
Mengoni
,
M.
,
Luxmoore
,
B. J.
,
Wijayathunga
,
V. N.
,
Jones
,
A. C.
,
Broom
,
N. D.
, and
Wilcox
,
R. K.
,
2015
, “
Derivation of Inter-Lamellar Behaviour of the Intervertebral Disc Annulus
,”
J. Mech. Behav. Biomed. Mater.
,
48
, pp.
164
172
.10.1016/j.jmbbm.2015.03.028
12.
Michalek
,
A. J.
,
Buckley
,
M. R.
,
Bonassar
,
L. J.
,
Cohen
,
I.
, and
Iatridis
,
J. C.
,
2009
, “
Measurement of Local Strains in Intervertebral Disc Anulus Fibrosus Tissue Under Dynamic Shear: Contributions of Matrix Fiber Orientation and Elastin Content
,”
J. Biomech.
,
42
(
14
), pp.
2279
2285
.10.1016/j.jbiomech.2009.06.047
13.
Guerin
,
H. A. L.
, and
Elliott
,
D. M.
,
2006
, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
,
39
(
8
), pp.
1410
1418
.10.1016/j.jbiomech.2005.04.007
14.
Fraser
,
J. R. E.
,
Laurent
,
T. C.
, and
Laurent
,
U. B. G.
,
1997
, “
Hyaluronan: Its Nature, Distribution, Functions and Turnover
,”
J. Intern. Med.
,
242
(
1
), pp.
27
33
.10.1046/j.1365-2796.1997.00170.x
15.
Gelse
,
K.
,
Pöschl
,
E.
, and
Aigner
,
T.
,
2003
, “
Collagens—Structure, Function, and Biosynthesis
,”
Adv. Drug Delivery Rev.
,
55
(
12
), pp.
1531
1546
.10.1016/j.addr.2003.08.002
16.
Mark
,
P.
, and
Nilsson
,
L.
,
2001
, “
Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K
,”
J. Phys. Chem. A
,
105
(
43
), pp.
9954
9960
.10.1021/jp003020w
17.
Florová
,
P.
,
Sklenovský
,
P.
,
Banáš
,
P.
, and
Otyepka
,
M.
,
2010
, “
Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact
,”
J. Chem. Theory Comput.
,
6
(
11
), pp.
3569
3579
.10.1021/ct1003687
18.
Iatridis
,
J. C.
,
MacLean
,
J. J.
,
O'Brien
,
M.
, and
Stokes
,
I. A. F.
,
2007
, “
Measurements of Proteoglycan and Water Content Distribution in Human Lumbar Intervertebral Discs
,”
Spine
,
32
(
14
), pp.
1493
1497
.10.1097/BRS.0b013e318067dd3f
19.
Watanabe
,
A.
,
Benneker
,
L. M.
,
Boesch
,
C.
,
Watanabe
,
T.
,
Obata
,
T.
, and
Anderson
,
S. E.
,
2007
, “
Classification of Intervertebral Disk Degeneration With Axial T2 Mapping
,”
Am. J. Roentgenol.
,
189
(
4
), pp.
936
942
.10.2214/AJR.07.2142
20.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
in 't Veld
,
P. J.
, et al.,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.10.1016/j.cpc.2021.108171
21.
Brooks
,
B. R.
,
Brooks
,
C. L.
,
Mackerell
,
A. D.
,
Nilsson
,
L.
,
Petrella
,
R. J.
,
Roux
,
B.
,
Won
,
Y.
, et al.,
2009
, “
CHARMM: The Biomolecular Simulation Program
,”
J. Comput. Chem.
,
30
(
10
), pp.
1545
1614
.10.1002/jcc.21287
22.
Guvench
,
O.
,
Mallajosyula
,
S. S.
,
Raman
,
E. P.
,
Hatcher
,
E.
,
Vanommeslaeghe
,
K.
,
Foster
,
T. J.
,
Jamison
,
F. W.
, and
MacKerell
,
A. D.
,
2011
, “
CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate-Protein Modeling
,”
J. Chem. Theory Comput.
,
7
(
10
), pp.
3162
3180
.10.1021/ct200328p
23.
Panjabi
,
M. M.
, and
White
,
A. A.
,
1990
,
Clinical Biomechanics of the Spine
, Lippincott, Philadelphia, PA.https://www.google.co.uk/books/edition/Clinical_Biomechanics_of_the_Spine/hDFsQgAACAAJ?hl=en
24.
Fujita
,
Y.
,
Wagner
,
D. R.
,
Biviji
,
A. A.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
2000
, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Med. Eng. Phys.
,
22
(
5
), pp.
349
357
.10.1016/S1350-4533(00)00053-9
25.
Hollingsworth
,
N. T.
, and
Wagner
,
D. R.
,
2011
, “
Modeling Shear Behavior of the Annulus Fibrosus
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1103
1114
.10.1016/j.jmbbm.2011.03.019
26.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T.
,
1989
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
,
14
(
11
), pp.
1256
1260
.10.1097/00007632-198911000-00020
27.
Schmidt
,
H.
,
Bashkuev
,
M.
,
Dreischarf
,
M.
,
Rohlmann
,
A.
,
Duda
,
G.
,
Wilke
,
H. J.
, and
Shirazi-Adl
,
A.
,
2013
, “
Computational Biomechanics of a Lumbar Motion Segment in Pure and Combined Shear Loads
,”
J. Biomech.
,
46
(
14
), pp.
2513
2521
.10.1016/j.jbiomech.2013.06.038
28.
Krempl
,
E.
, and
Khan
,
F.
,
2003
, “
Rate (Time)-Dependent Deformation Behavior: An Overview of Some Properties of Metals and Solid Polymers
,”
Int. J. Plasticity
,
19
(
7
), pp.
1069
1095
.10.1016/S0749-6419(03)00002-0
29.
Black
,
S. D.
, and
Mould
,
D. R.
,
1991
, “
Development of Hydrophobicity Parameters to Analyze Proteins Which Bear Post- or Cotranslational Modifications
,”
Anal. Biochem.
,
193
(
1
), pp.
72
82
.10.1016/0003-2697(91)90045-U
30.
Bhattacharya
,
S.
, and
Dubey
,
D. K.
,
2021
, “
Radial Variations in Mechanical Behaviour and Fibrillar Structure in Annulus Fibrosus Has Foundations at Molecular Length-Scale: Insights From Molecular Dynamics Simulations of Type I and Type II Collagen Molecules
,”
J. Mater. Res.
,
36
(
17
), pp.
3407
3425
.10.1557/s43578-021-00376-2
31.
Wang
,
W.-J.
,
Yu
,
X.-H.
,
Wang
,
C.
,
Yang
,
W.
,
He
,
W.-S.
,
Zhang
,
S.-J.
,
Yan
,
Y.-G.
, and
Zhang
,
J.
,
2015
, “
MMPs and ADAMTSs in Intervertebral Disc Degeneration
,”
Clin. Chim. Acta
,
448
, pp.
238
246
.10.1016/j.cca.2015.06.023
32.
Zhang
,
W.-L.
,
Chen
,
Y.-F.
,
Meng
,
H.-Z.
,
Du
,
J.-J.
,
Luan
,
G.-N.
,
Wang
,
H.-Q.
,
Yang
,
M.-W.
, and
Luo
,
Z.-J.
,
2017
, “
Role of miR-155 in the Regulation of MMP-16 Expression in Intervertebral Disc Degeneration
,”
J. Orthop. Res.
,
35
(
6
), pp.
1323
1334
.10.1002/jor.23313
33.
Krismer
,
M.
,
Haid
,
C.
,
Behensky
,
H.
,
Kapfinger
,
P.
,
Landauer
,
F.
, and
Rachbauer
,
F.
,
2000
, “
Motion in Lumbar Functional Spine Units During Side Bending and Axial Rotation Moments Depending on the Degree of Degeneration
,”
Spine
,
25
(
16
), pp.
2020
2027
.10.1097/00007632-200008150-00004
34.
Oxland
,
T. R.
,
Lund
,
T.
,
Jost
,
B.
,
Cripton
,
P.
,
Lippuner
,
K.
,
Jaeger
,
P.
, and
Nolte
,
L.-P.
,
1996
, “
The Relative Importance of Vertebral Bone Density and Disc Degeneration in Spinal Flexibility and Interbody Implant Performance: An In Vitro Study
,”
Spine
,
21
(
22
), pp.
2558
2569
.10.1097/00007632-199611150-00005
35.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2013
, “
Intervertebral Disc Degeneration Alters Lumbar Spine Segmental Stiffness in All Modes of Loading Under a Compressive Follower Load
,”
Spine J.
,
13
(
9
), pp.
1134
1147
.10.1016/j.spinee.2013.02.010
36.
Chen
,
X.
,
Li
,
X.
,
Wang
,
Y.
, and
Lu
,
S.
,
2023
, “
Relation of Lumbar Intervertebral Disc Height and Severity of Disc Degeneration Based on Pfirrmann Scores
,”
Heliyon
,
9
(
10
), p.
e20764
.10.1016/j.heliyon.2023.e20764
37.
Chou
,
D.
,
Samartzis
,
D.
,
Bellabarba
,
C.
,
Patel
,
A.
,
Luk
,
K. D. K.
,
Kisser
,
J. M. S.
, and
Skelly
,
A. C.
,
2011
, “
Degenerative Magnetic Resonance Imaging Changes in Patients With Chronic Low Back Pain: A Systematic Review
,”
Spine
,
36
, pp.
S43
S53
.10.1097/BRS.0b013e31822ef700
38.
Kolstad
,
F.
,
Myhr
,
G.
,
Kvistad
,
K. A.
,
Nygaard
,
Ø. P.
, and
Leivseth
,
G.
,
2005
, “
Degeneration and Height of Cervical Discs Classified From MRI Compared With Precise Height Measurements From Radiographs
,”
Eur. J. Radiol.
,
55
(
3
), pp.
415
420
.10.1016/j.ejrad.2005.02.005
39.
Salamat
,
S.
,
Hutchings
,
J.
,
Kwong
,
C.
,
Magnussen
,
J.
, and
Hancock
,
M. J.
,
2016
, “
The Relationship Between Quantitative Measures of Disc Height and Disc Signal Intensity With Pfirrmann Score of Disc Degeneration
,”
SpringerPlus
,
5
(
1
), p.
829
.10.1186/s40064-016-2542-5
40.
Han
,
W. M.
,
Nerurkar
,
N. L.
,
Smith
,
L. J.
,
Jacobs
,
N. T.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2012
, “
Multi-Scale Structural and Tensile Mechanical Response of Annulus Fibrosus to Osmotic Loading
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1610
1621
.10.1007/s10439-012-0525-4
41.
O'Connell
,
G. D.
,
Johannessen
,
W.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Human Internal Disc Strains in Axial Compression Measured Noninvasively Using Magnetic Resonance Imaging
,”
Spine
,
32
(
25
), pp.
2860
2868
.10.1097/BRS.0b013e31815b75fb
42.
Bhattacharya
,
S.
, and
Dubey
,
D. K.
,
2025
, “
Role of Intra-Lamellar Collagen and Hyaluronan Nanostructures in Annulus Fibrosus on Lumbar Spine Biomechanics: Insights From Molecular Mechanics-Finite Element-Based Multiscale Analyses
,”
Med. Biol. Eng. Comput.
,
63
(
1
), pp.
139
157
.10.1007/s11517-024-03184-y
You do not currently have access to this content.