Tapping-mode atomic force microscopy has wide applications for probing the nanoscale surface and subsurface properties of a variety of materials in a variety of environments. Strongly nonlinear effects due to large variations in the force field on the probe tip over very small length scales and the intermittency of contact with the sample, however, result in strong dynamical instabilities. These can result in a sudden loss of stability of low-contact-velocity oscillations of the atomic-force-microscope tip in favor of oscillations with high contact velocity, coexistence of stable oscillatory motions, and destructive, nonrepeatable, and unreliable characterization of the nanostructure. In this paper, dynamical systems tools for piecewise-smooth systems are employed to characterize the loss of stability and associated parameter-hysteresis phenomena.

1.
Albrecht
,
T. R.
,
Akamine
,
S.
,
Carver
,
T. E.
, and
Quate
,
C. F.
, 1990, “
Microfarication of Cantilever Styli for the Atomic Force Microscope
,”
J. Vac. Sci. Technol.
0022-5355,
8
(
4
), pp.
3386
3396
.
2.
Radmacher
,
M.
,
Tillmann
,
R. W.
,
Fritz
,
M.
, and
Gaub
,
H. E.
, 1992, “
From Molecules to Cells: Imaging Soft Samples With the Atomic Force Microscope
,”
Science
0036-8075,
257
, pp.
1900
1905
.
3.
Reiley
,
T. C.
,
Fan
,
L. S.
, and
Mamin
,
H. J.
, 1995, “
Micromechanical Structures for Data Storage
,”
Microelectron. Eng.
0167-9317,
27
, pp.
495
498
.
4.
Rabe
,
U.
,
Amelio
,
S.
,
Kopycinska
,
M.
,
Hirsekorn
,
S.
,
Kempf
,
M.
,
Göken
,
M.
, and
Arnold
,
W.
, 2002, “
Imaging and Measurement of Local Mechanical Material Properties by Atomic Force Acoustic Microscopy
,”
Surf. Interface Anal.
0142-2421,
33
, pp.
65
70
.
5.
Jalili
,
N.
, and
Laxminarayana
,
K.
, 2004, “
A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences
,”
Mechatronics
0957-4158,
14
, pp.
907
945
.
6.
Gleyzes
,
P.
,
Kuo
,
P. K.
, and
Boccara
,
A. C.
, 1991, “
Bistable Behavior of a Vibrating Tip Near a Solid Surface
,”
J. Appl. Phys.
0021-8979,
58
(
25
), pp.
2989
2991
.
7.
Anczykowski
,
B.
,
Krüger
,
D.
,
Babcock
,
K. L.
, and
Fuchs
,
H.
, 1996, “
Basic Properties of Dynamic Force Microscopy With the Scanning Force Microscope in Experiment and Simulation
,”
Ultramicroscopy
0304-3991,
66
, pp.
251
259
.
8.
Anczykowski
,
B.
,
Krüger
,
D.
, and
Fuchs
,
H.
, 1996, “
Cantilever Dynamics in Quasinoncontact Force Microscopy: Spectroscopic Aspects
,”
Phys. Rev. B
0163-1829,
53
(
23
), pp.
15485
15488
.
9.
Boisgard
,
R.
,
Michel
,
D.
, and
Aimé
,
J. P.
, 1998, “
Hysteresis Generated by Attractive Interaction: Oscillating Behavior of a Vibrating Tip-Microlever System Near a Surface
,”
Surf. Sci.
0039-6028,
401
, pp.
199
205
.
10.
Marth
,
M.
,
Maier
,
D.
, and
Honerkamp
,
J.
, 1999, “
A Unifying View on Some Experimental Effects in Tapping-Mode Atomic Force Microscopy
,”
J. Appl. Phys.
0021-8979,
85
(
10
), pp.
7030
7036
.
11.
Haugstad
,
G.
, and
Jones
,
R. R.
, 1999, “
Mechanisms of Dynamic Force Microscopy on Polyvinyl Alcohol: Region-Specific Noncontact and Intermittent Contact Regimes
,”
Ultramicroscopy
0304-3991,
76
, pp.
77
86
.
12.
Kühle
,
A.
,
Sorensen
,
A. H.
, and
Bohr
,
J.
, 1997, “
Role of Attractive Forces in Tapping Tip Force Microscopy
,”
J. Appl. Phys.
0021-8979,
81
, pp.
6562
6569
.
13.
García
,
R.
, and
San Paulo
,
A.
, 2000, “
Dynamics of a Vibrating Tip Near or in Intermittent Contact With a Surface
,”
Phys. Rev. B
0163-1829,
61
(
20
),
R13381
.
14.
Sebastian
,
A.
,
Salapaka
,
M. V.
,
Chen
,
D. J.
, and
Cleveland
,
J. P.
, 2001, “
Harmonic and Power Balance Tools for Tapping-Mode Atomic Force Microscope
,”
J. Appl. Phys.
0021-8979,
89
, pp.
6473
6480
.
15.
Lee
,
S. I.
,
Howell
,
S. W.
,
Raman
,
A.
, and
Reifenberger
,
R.
, 2002, “
Nonlinear Dynamics of Microcantilevers in Tapping Mode Atomic Force Microscopy: A Comparison Between Theory and Experiment
,”
Phys. Rev. B
0163-1829,
66
, pp.
115409
-1–
10
.
16.
Doedel
,
E.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
, 1997,
AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations
,
Concordia University
, Montreal.
17.
Yagasaki
,
K.
, 2004, “
Nonlinear Dynamics of Vibrating Microcantivers in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
70
, pp.
245419
-1–
10
.
18.
van de Water
,
W.
, and
Molenaar
,
J.
, 2000, “
Dynamics of Vibrating Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
11
, pp.
192
199
.
19.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Indicidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
20.
Fredriksson
,
M. H.
, and
Nordmark
,
A. B.
, 2000, “
On Normal Form Calculation in Impact Oscillators
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
315
330
.
21.
Burnham
,
N. A.
,
Behrend
,
O. P.
,
Oulevey
,
F.
,
Gremaud
,
G.
,
Gallo
,
P. J.
,
Gourdon
,
D.
,
Dupas
,
Z.
,
Kulik
,
A. J.
,
Pollock
,
H.
, and
Briggs
,
G. A.
, 1997, “
How Does a Tip Tap
?”
Nanotechnology
0957-4484,
8
(
2
), pp.
67
75
.
22.
García
,
R.
, and
San Paulo
,
A.
, 1999, “
Attractive and Repulsive Tip-Sample Interaction Regimes in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
60
(
7
), pp.
4961
4967
.
23.
San Paulo
,
A.
, and
García
,
R.
, 2002, “
Unifying Theory of Tapping-Mode Atomic-Force Microscopy
,”
Phys. Rev. B
0163-1829,
66
, pp.
041406
-1–
4
.
24.
Hu
,
H.
, 1995, “
Simulation Complexities in the Dynamics of a Continuously Piecewise-Linear Oscillator
,”
Chaos, Solitons Fractals
0960-0779,
5
(
11
), pp.
2201
2212
.
25.
Zhao
,
X.
,
Dankowicz
,
H.
,
Reddy
,
C. K.
, and
Nayfeh
,
A. H.
, 2004, “
Modeling and Simulation Methodology for Impact Microactuators
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
775
784
.
26.
Leine
,
R. I.
,
van Campen
,
D. H.
, and
van de Vrande
,
B. L.
, 2000, “
Bifurcations in Nonlinear Discontinuous Systems
,”
Nonlinear Dyn.
0924-090X,
23
, pp.
105
164
.
27.
Dankowicz
,
H.
, and
Zhao
,
X.
, 2005, “
Near-Grazing Dynamics in Tapping-Mode Atomic Force Microscopy
,”
Proceedings of ENOC-2005
,
Eindhoven
, Netherlands, pp.
2121
2130
.
28.
Foale
,
S.
, and
Bishop
,
S. R.
, 1994, “
Bifurcations in Impact Oscillations
,”
Nonlinear Dyn.
0924-090X,
6
, pp.
285
299
.
29.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
, 2000, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Physica D
0167-2789,
136
, pp.
280
302
.
30.
di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champneys
,
A. R.
, 2001, “
Normal Form Maps for Grazing Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Physica D
0167-2789,
160
, pp.
222
254
.
31.
Bhatia
,
R.
, 1987,
Perturbation Bounds for Matrix Eigenvalues
,
Wiley
,
New York
.
You do not currently have access to this content.