In this paper, a new method for the stability analysis of interrupted turning processes is introduced. The approach is based on the construction of a characteristic function whose complex roots determine the stability of the system. By using the argument principle, the number of roots causing instability can be counted, and thus, an exact stability chart can be drawn. In the special case of period doubling bifurcation, the corresponding multiplier 1 is substituted into the characteristic function, leading to an implicit formula for the stability boundaries. Further investigations show that all the period doubling boundaries are closed curves, except the first lobe at the highest cutting speeds. Together with the stability boundaries of Neimark-Sacker (or secondary Hopf) bifurcations, the unstable parameter domains are formed from the union of lobes and lenses.

1.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
, 2005, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
446
453
.
2.
Tobias
,
S. A.
, 1961,
Schwingungen an Werkzeugmaschinen
,
Carl Hanser Verlag
, Munchen.
3.
Tlusty
,
J.
, 2000,
Manufacturing Process and Equipment
,
Prentice-Hall
, Englewood Cliffs, NJ.
4.
Minis
,
I.
, and
Yanushewsky
,
R.
, 1993, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
1
8
.
5.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
, 2002, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
1
), pp.
217
225
.
6.
Insperger
,
T.
, and
Stépán
,
G.
, 2000, “
Stability of High-Speed Milling
,”
Proceedings of Symp. on Nonlinear Dynamics and Stochastic Mechanics
, Orlando, September, ASME, New York, Vol. AMD-
241
, pp.
119
123
.
7.
Balachandran
,
B.
, 2001, “
Non-linear Dynamics of Milling Process
,”
Philos. Trans. R. Soc. London
0962-8436,
359
, pp.
793
820
.
8.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
1
), pp.
25
34
.
9.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
1
), pp.
117
141
.
10.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
35
40
.
11.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
, 2003, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
0022-460X,
262
(
2
), pp.
333
345
.
12.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
, 2001, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
Proceedings of ASME 2001 Design Engineering Technical Conferences
, Pittsburgh, September, ASME, New York, ASME Paper No. DETC2001/VIB-21581 (CD-ROM).
13.
Corpus
,
W. T.
, and
Endres
,
T. W. J.
, 2000, “
A High Order Analytical Solution for the Added Stability Lobes in Intermittent Machining
,”
Proceedings of Symp. on Machining Processes
, Vol.
MED-11
, pages
871
878
, September, ASME, New York, ASME Paper No. DETC97/VIB-4021.
14.
Corpus
,
W. T.
, and
Endres
,
W. J.
, 2004, “
Added Stability Lobes in Machining Processes That Exhibit Periodic Time Variation, Part 1: An Analytical Solution
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
467
474
.
15.
Corpus
,
W. T.
, and
Endres
,
W. J.
, 2004, “
Added Stability Lobes in Machining Processes That Exhibit Periodic Time Variation, Part 2: Experimental validation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
475
480
.
16.
Long
,
X. H.
, and
Balachandran
,
B.
, 2004, “
Milling Model With Variable Time Delay
,”
Proceedings of IMECE2004 ASME International Mechanical Engineering Congress and R&D Expo
, ASME, New York, ASME Paper No. IMECE2004-59207 (CD-ROM).
17.
Faassen
,
R. P. H.
,
van de Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
, 2005, Updated Tool Path Modelling With Periodic Delay for Chatter Prediction in Milling. D. H. van Campen, ed., 5th EUROMECH Nonlinear Oscillations Conference (ENOC), CD-ROM.
18.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
(
1
), pp.
357
362
.
19.
Tekeli
,
A.
, and
Budak
,
E.
, 2005, “
Maximization of Chatter-Free Material Removal Rate in End Milling Using Analytical Methods
,”
Mach. Sci. Technol.
1091-0344,
9
, pp.
147
167
.
20.
Gradišek
,
J.
,
Govekar
,
E.
,
Grabec
,
I.
,
Kalveram
,
M.
,
Weinert
,
K.
,
Insperger
,
T.
, and
Stépán
,
G.
, 2005, “
On Stability Prediction for Low Radial Immersion Milling
,”
Mach. Sci. Technol.
1091-0344,
9
, pp.
117
130
.
21.
Insperger
,
T.
, and
Stépán
,
G.
, 2002, “
Stability Chart for the Delayed Mathieu Equation
,”
Proceedings of Royal Society: Mathematical, Physical and Engineering Sciences
,
458
(
2024
), pp.
1989
1998
.
22.
Neimark
,
J. I.
, 1949, “
D-Subdivision and Spaces of Quasi-Polynomials
,”
Prikl. Mat. Mekh.
0032-8235,
13
, pp.
349
380
.
23.
Stronge
,
W. J.
, 2000,
Impact Mechanics
,
Cambridge University Press
, Cambridge, England.
24.
Szalai
,
R.
,
Stépán
,
G.
, and
Hogan
,
S. J.
, 2004, “
Global Dynamics of Low Immersion High-Speed Milling
,”
Chaos
1054-1500,
14
(
4
), pp.
1069
1077
.
25.
Hale
,
J. K.
, 1977,
Theory of Functional Differential Equations
,
Springer-Verlag
, Berlin.
26.
Farkas
,
M.
, 1994,
Periodic Motions
,
Springer-Verlag
, Berlin.
27.
Stépán
,
G.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman
, London.
28.
Stépán
,
G.
, and
Kalmár-Nagy
,
T.
, 1997, “
Nonlinear Regenerative Machine Tool Vibrations
,”
Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, California
, September, ASME, New York, ASME Paper No. DETC97/VIB-4021.
29.
Stépán
,
G.
,
Szalai
,
R.
,
Mann
,
B. P.
,
Bayly
,
P. V.
,
Insperger
,
T.
,
Gradisek
,
J.
, and
Govekar
,
E.
, 2005, “
Nonlinear Dynamics of High-Speed Milling – Analysis, Numerics and Experiments
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
2
), pp.
197
203
.
You do not currently have access to this content.