In this paper, the operational matrix of Euler functions for fractional derivative of order β in the Caputo sense is derived. Via this matrix, we develop an efficient collocation method for solving nonlinear fractional Volterra integro-differential equations. Illustrative examples are given to demonstrate the validity and applicability of the proposed method, and the comparisons are made with the existing results.
Issue Section:
Research Papers
References
1.
Diethelm
, K.
, 2010
, The Analysis of Fractional Differential Equations
, Springer-Verlag
, Berlin, Germany
.10.1007/978-3-642-14574-22.
Carpinteri
, A.
, Chiaia
, B.
, and Cornetti
, P.
, 2001
, “Static-Kinematic Duality and the Principle of Virtual Work in the Mechanics of Fractal Media
,” Comput. Methods Appl. Mech. Eng.
, 191
(1–2
), pp. 3
–19
.10.1016/S0045-7825(01)00241-93.
Podlubny
, I.
, 1999
, Fractional Differential Equations. Mathematics in Science and Engineering
, Academic Press
, New York
, p. 198
.4.
Oldham
, K. B.
, and Spanier
, J.
, 1974
, The Fractional Calculus, Integrations and Differentiations of Arbitrary Order
, Academic Press
, New York
.5.
Rossikhin
, Y. A.
, and Shitikova
, M. V.
, 1997
, “Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,” ASME Appl. Mech. Rev.
, 50
(1
), pp. 15
–67
.10.1115/1.31016826.
Baillie
, R. T.
, 1996
, “Long Memory Processes and Fractional Integration in Econometrics
,” J. Econometrics
, 73
(1
), pp. 5
–59
.10.1016/0304-4076(95)01732-17.
Kilbas
, A. A.
, Srivastava
, H. M.
, and Trujillo
, J. J.
, 2006
, Theory and Applications of Fractional Differential Equations
, Elsevier
, San Diego, CA
.8.
Oldham
, K. B.
, and Spanier
, J.
, 1974
, Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order
, Academic Press
, New York/London, UK
.9.
Avudainayagam
, A.
, and Vani
, C.
, 2000
, “Wavelet Galerkin Method for Integro-Differential Equations
,” Appl. Numer. Math.
, 32
(3
), pp. 247
–254
.10.1016/S0168-9274(99)00026-410.
Maleknejad
, K.
, and Tavassoli Kajani
, M.
, 2004
, “Solving Linear Integro-Differential Equation System by Galerkin Methods With Hybrid Functions
,” Appl. Math. Comput.
, 159
(3
), pp. 603
–612
.10.1016/j.amc.2003.10.04611.
Zhu
, L.
, and Fan
, Q.
, 2012
, “Solving Fractional Nonlinear Fredholm Integro-Differential Equations by the Second Kind Chebyshev Wavelet
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(6
), pp. 2333
–2341
.10.1016/j.cnsns.2011.10.01412.
Huang
, L.
, Li
, X.
, Zhaoa
, Y.
, and Duana
, X.
, 2011
, “Approximate Solution of Fractional Integro-Differential Equations by Taylor Expansion Method
,” Comput. Math. Appl.
, 62
(3
), pp. 1127
–1134
.10.1016/j.camwa.2011.03.03713.
Saeedi
, H.
, and Moghadam
, M. M.
, 2011
, “Numerical Solution of Nonlinear Volterra Integro-Differential Equations of Arbitrary Order by CAS Wavelets
,” Commun. Nonlinear Sci. Numer. Simul.
, 16
(3
), pp. 1216
–1226
.10.1016/j.cnsns.2010.07.01714.
Khader
, M. M.
, 2011
, “Numerical Solution of Nonlinear Multi-Order Fractional Differential Equations by Implementation of the Operational Matrix of Fractional Derivative
,” Stud. Nonlinear Sci.
, 2
(1
), pp. 5
–12
.15.
Balaji
, S.
, “Legendre Wavelet Operational Matrix Method for Solution of Fractional Order Riccati Differential Equation
,” J. Egypt. Math. Soc.
, (in press).16.
El-Wakil
, S. A.
, Elhanbaly
, A.
, and Abdou
, M. A.
, 2006
, “Adomian Decomposition Method for Solving Fractional Nonlinear Differential Equations
,” Appl. Math. Comput.
, 182
(1
), pp. 313
–324
.10.1016/j.amc.2006.02.05517.
Ertürk
, V. S.
, and Momani
, S.
, 2008
, “Solving Systems of Fractional Differential Equations Using Differential Transform Method
,” J. Comput. Appl. Math.
, 215
(1
), pp. 142
–151
.10.1016/j.cam.2007.03.02918.
Ertürk
, V. S.
, Momani
, S.
, and Odibat
, Z.
, 2088
, “Application of Generalized Differential Transform Method to Multi-Order Fractional Differential Equations
,” Commun. Nonlinear Sci. Numer. Simul.
, 13
(8
), pp. 1642
–1654
.10.1016/j.cnsns.2007.02.00619.
Karimi Vanani
, S.
, and Aminataei
, A.
, 2011
, “Operational Tau Approximation for a General Class of Fractional Integro-Differential Equations
,” J. Comput. Appl. Math.
, 30
(3
), pp. 655
–674
.20.
Khader
, M. M.
, and Sweilam
, N. H.
, 2013
, “On the Approximate Solutions for System of Fractional Integro-Differential Equations Using Chebyshev Pseudo-Spectral Method
,” Appl. Math. Modell.
, 37
(24
), pp. 9819
–9828
.10.1016/j.apm.2013.06.01021.
Doha
, E. H.
, Bhrawy
, A. H.
, and Ezz-Eldien
, S. S.
, 2012
, “A New Jacobi Operational Matrix: An Application for Solving Fractional Differential Equations
,” Appl. Math. Modell.
, 36
(10
), pp. 4931
–4943
.10.1016/j.apm.2011.12.03122.
Yang
, Y.
, Chen
, Y.
, and Huang
, Y.
, 2014
, “Convergence Analysis of the Jacobi Spectral-Collocation Method for Fractional Integro-Differential Equations
,” Acta Math. Sci.
, 34
(3
), pp. 673
–690
.10.1016/S0252-9602(14)60039-423.
Ma
, X.
, and Huang
, C.
, 2013
, “Numerical Solution of Fractional Integro-Differential Equations by a Hybrid Collocation Method
,” Appl. Math. Comput.
, 219
(12
), pp. 6750
–6760
.10.1016/j.amc.2012.12.07224.
Mirzaee
, F.
, and Bimesl
, S.
, 2014
, “A New Euler Matrix Method for Solving Systems of Linear Volterra Integral Equations With Variable Coefficients
,” J. Egypt. Math. Soc.
, 22
(2
), pp. 238
–248
.10.1016/j.joems.2013.06.01625.
Mirzaee
, F.
, and Bimesl
, S.
, 2014
, “Application of Euler Matrix Method for Solving Linear and a Class of Nonlinear Fredholm Integro-Differential Equations
,” Mediterr. J. Math.
, 11
(3
), pp. 999
–1018
.10.1007/s00009-014-0391-426.
Hille
, E.
, and Phillips
, R. S.
, 1974
, Functional Analysis and Semi-Groups
, American Mathematical Society
, Colloquium Publications, p. 31
.27.
Caputo
, M.
, 1967
, “Linear Model of Dissipation Whose Q is Almost Frequency Independent
,” Geophys. J. R. Astron. Soc.
, 13
(5
), pp. 529
–539
.10.1111/j.1365-246X.1967.tb02303.x28.
Kim
, T.
, 2012
, “Identities Involving Frobenius–Euler Polynomials Arising From Non-Linear Differential Equations
,” J. Number Theory
, 132
(12
), pp. 2854
–2865
.10.1016/j.jnt.2012.05.03329.
Chu
, W.
, and Wang
, C. Y.
, 2009
, “Arithmetic Identities Involving Bernoulli and Euler Numbers
,” Results Math.
, 55
(1–2
), pp. 65
–77
.10.1007/s00025-009-0378-930.
Tohidi
, E.
, Bhrawy
, A. H.
, and Erfani
, Kh.
, 2013
, “A Collocation Method Based on Bernoulli Operational Matrix for Numerical Solution of Generalized Pantograph Equation
,” Appl. Math. Modell.
, 37
(6
), pp. 4283
–4294
.10.1016/j.apm.2012.09.03231.
Srivastava
, H. M.
, 2004
, “Remarks on Some Relationships Between the Bernoulli and Euler Polynomials
,” Appl. Math. Lett.
, 17
(4
), pp. 375
–380
.10.1016/S0893-9659(04)90077-832.
Mirzaee
, F.
, and Bimesl
, S.
, 2013
, “A New Approach to Numerical Solution of Second-Order Linear Hyperbolic Partial Differential Equations Arising From Physics and Engineering
,” Results Phys.
, 3
, pp. 241
–247
.10.1016/j.rinp.2013.10.00233.
Saadatmandi
, A.
, and Dehghan
, M.
, 2011
, “A Legendre Collocation Method for Fractional Integro-Differential Equations
,” J. Vib. Control
, 17
(13
), pp. 2050
–2058
.10.1177/1077546310395977Copyright © 2015 by ASME
You do not currently have access to this content.