In this manuscript, a new method is introduced for solving multi-order fractional differential equations. By transforming the fractional differential equations into an optimization problem and using polynomial basis functions, we obtain the system of algebraic equation. Then, we solve the system of nonlinear algebraic equation and obtain the coefficients of polynomial expansion. Also, we show the convergence of the method. Some numerical examples are presented which illustrate the theoretical results and the performance of the method.
Issue Section:
Research Papers
References
1.
Gelfand
, I. M.
, and Fomin
, S. V.
, 1963
, Calculus of Variations
, Prentice–Hall
, Englewood Cliffs, NJ.2.
Băleanu
, D.
, Diethelm
, K.
, Scalas
, E.
, and Trujillo
, J. J.
, 2012
, Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos
), World Scientific
, Boston
.10.1142/97898143552163.
Shuqin
, Z.
, 2006
, “Existence of Solution for Boundary Value Problem of Fractional Order
,” Acta Math. Sci.
26
(2), pp. 220
–228
.10.1016/S0252-9602(06)60044-14.
Gutierrez
, R. E.
, Rosario
, J. M.
, and Tenreiro Machado
, J. A.
, 2010, “Fractional Order Calculus: Basic Concepts and Engineering Applications
,” Math. Prob. Eng.
, 2010, p. 375858.10.1155/2010/3758585.
Hilfer
, R.
, 2000
, Applications of Fractional Calculus in Physics
, World Scientific Publishing
, River Edge, NJ
.10.1142/97898128177476.
Sabatier
, J.
, Agrawal
, O. P.
, and Tenreiro
, M. J. A.
, 2007
, Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, Springer
, Dordrecht
.10.1007/978-1-4020-6042-77.
Tarasov
, V. E.
, 2013
, “Review of Some Promising Fractional Physical Models
,” Int. J. Mod. Phys. B
27
(9), p. 1330005
.10.1142/S02179792133000538.
Tarasov
, V. E.
, 2011
, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
, Springer
, New York
.9.
Lorenzo
, F.
, and Hartley
, T. T.
, 2008
, “Initialization of Fractional-Order Operators and Fractional Differential Equations
,” ASME J. Comput. Nonlinear Dyn.
3
(2
), p. 021101
.10.1115/1.283358510.
Jafari
, H.
, Tajadodi
, H.
, and Baleanu
, D.
, 2014
, “Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations
,” ASME J. Comput. Nonlinear Dyn.
9
(2
), p. 021019
.10.1115/1.402577011.
Bagley
, R. L.
, and Torvik
, P. J.
, 1983
, “Fractional Calculus: A Different Approach to the Analysis of Viscoelastically Damped Structures
,” AIAA J.
21
(5
), pp. 741
–748
.10.2514/3.814212.
Gaul
, L.
, Klein
, P.
, and Kempfle
, S.
, 1989
, “Impulse Response Function of an Oscillator With Fractional Derivative in Damping Description
,” Mech. Res. Commun.
16
(5
), pp. 297
–305
.10.1016/0093-6413(89)90067-013.
Jafari
, H.
, Yousefi
, S. A.
, and Firoozjaee
, M. A.
, 2011
, “Numerical Solution of Multi-Order Fractional Differential Equations Using Legendre Wavelets
,” Commun. Fractals Calculus
2
(1
), pp. 9
–16
.14.
Momani
, S.
, and Odibat
, Z.
, 2006
, “Analytical Approach to Linear Fractional Partial Differential Equations Arising in Fluid Mechanics
,” Phys. Lett. A
355
(4–5), pp. 271
–279
.10.1016/j.physleta.2006.02.04815.
Caputo
, M.
, 1967
, “Linear Models of Dissipation Whose Q Is Almost Frequency Independent. Part II
,” J. R. Aust. Soc.
13
(5), pp. 529
–539
.10.1111/j.1365-246X.1967.tb02303.x16.
Luchko
, Y.
, and Gorenflo
, R.
, 1999
, “An Operational Method for Solving Fractional Differential Equations With the Caputo Derivatives
,” Acta Math. Vietnamica
24
(2
), pp. 207
–233
.17.
Kilbas
, A. A.
, Srivastava
, H. M.
, and Trujillo
, J. J.
, 2006
, “Theory and Applications of Fractional Differential Equations
,” in North–Holland Mathematics Studies
, Vol. 204, Elsevier Science B.V.
, Amsterdam
.18.
Lotfi
, A.
, and Yousefi
, S. A.
, 2013
, “A Numerical Technique for Solving a Class of Fractional Variational Problems
,” J. Comput. Appl. Math.
237
(1), pp. 633
–643
.10.1016/j.cam.2012.08.00519.
Samko
, S. G.
, Kilbas
, A. A.
, and Marichev
, O. I.
, 1993
, Fractional Integrals and Derivatives Theory and Applications
, Gordon and Breach
, New York
.20.
Podlubny
, I.
, 1999
, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, Academic Press
, New York
.21.
Royden
, H. L.
, 1988
, Real Analysis
, 3rd ed., Macmillan Publishing Company
, New York.22.
Momani
, S.
, and Odibat
, Z.
, 2007
, “Numerical Comparison of Methods for Solving Linear Differential Equations of Fractional Order
,” Chaos, Solitons Fractals
, 31
(5), pp. 1248
–1255
.10.1016/j.chaos.2005.10.06823.
Jafari
, H.
, Yousefi
, S. A.
, Firoozjaee
, M. A.
, Momani
, S.
, and Khalique
, C. M.
, 2011
, “Application of Legendre Wavelets for Solving Fractional Differential Equations
,” Comput. Math. Appl.
62
(3), pp. 1038
–1045
.10.1016/j.camwa.2011.04.02424.
Mujeeb
, U. R.
, and Rahmat
, A. K.
, 2012
, “A Numerical Method for Solving Boundary Value Problems for Fractional Differential Equations
,” Appl. Math. Modell.
36
(3), pp. 894
–907
.10.1016/j.apm.2011.07.045Copyright © 2015 by ASME
You do not currently have access to this content.