This paper presents an efficient numerical method for solving the distributed fractional differential equations (FDEs). The suggested framework is based on a hybrid of block-pulse functions and Taylor polynomials. For the first time, the Riemann–Liouville fractional integral operator for the hybrid of block-pulse functions and Taylor polynomials has been derived directly and without any approximations. By taking into account the property of this operator, the problem under consideration is converted into a system of algebraic equations. The present method can be applied to both linear and nonlinear distributed FDEs. Easy implementation, simple operations, and accurate solutions are the essential features of the proposed hybrid functions. Illustrative examples are examined to demonstrate the performance and effectiveness of the developed approximation technique, and a comparison is made with the existing results.

References

1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
2.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
3.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
, pp.
918
925
.
4.
Mainardi
,
F.
,
1997
, “
Fractional Calculus, Some Basic Problems in Continuum and Statistical Mechanics
,”
Fractals and Fractional Calculus in Continuum Mechanics
,
A.
Carpinteri
, and
F.
Mainardi
, eds.,
Springer Verlag
,
New York
, pp.
291
348
.
5.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
, pp.
15
67
.
6.
Oldham
,
K. B.
,
2010
, “
Fractional Differential Equations in Electrochemistry
,”
Adv. Eng. Soft.
, 20, pp.
9
12
.
7.
Krishnasamy
,
V. S.
, and
Razzaghi
,
M.
,
2016
, “
The Numerical Solution of the Bagley-Torvik Equation With Fractional Taylor Method
,”
ASME J. Comput. Nonlinear Dyn.
,
11
, p.
051010
.
8.
Zak
,
M. A.
, and
Tenreiro Machado
,
J. A.
,
2017
, “
On the Formulation and Numerical Simulation of Distributed Order Fractional Optimal Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
52
, pp.
177
189
.
9.
Li
,
Y.
,
Sheng
,
H.
, and
Chen
,
Y. Q.
,
2011
, “
On Distributed Order Integrator/Differentiator
,”
Signal Process
,
91
, pp.
1079
1084
.
10.
Kharazmi
,
E.
,
Zayernouri
,
M.
, and
Karniadakis
,
G. E.
,
2017
, “
Petrov-Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations
,”
Signal Process.
,
91
, pp.
1079
1084
.
11.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
Nonlinear Dyn.
,
29
, pp.
57
98
.
12.
Chechkin
,
A. V.
,
Klafter
,
J.
, and
Sokolov
,
I. M.
,
2003
, “
Fractional Fokker-Planck Equation for Ultraslow Kinetics
,”
Europhys. Lett.
,
63
, pp.
326
332
.
13.
Naber
,
M.
,
2004
, “
Distributed Order Fractional Sub-Diffusion
,”
Fractals
,
12
, pp.
23
32
.
14.
Kochubei
,
A. N.
,
2008
, “
Distributed Order Calculus and Equations of Ultraslow Diffusion
,”
J. Math. Anal. Appl.
,
340
, pp.
252
281
.
15.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2009
, “
Numerical Analysis for Distributed Order Differential Equations
,”
J. Comput. Appl. Math.
,
225
, pp.
96
104
.
16.
Caputo
,
M.
,
1995
, “
Mean Fractional-Order-Derivative Differential Equation and Filters
,”
Annali dell'Università di Ferrara
,
41
(
1
) pp.
73
84
.
17.
Chechkin
,
A. V.
,
Gorenflo
,
R.
,
Sokolov
,
I. M.
, and
Gonchar
,
V. Y.
,
2003
, “
Distributed Order Time Fractional Diffusion Equation
,”
Fract. Calc. Appl. Anal.
,
6
, pp.
259
279
.
18.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
2000
, “
On the Existence of the Order Domain and the Solution of Distributed Order Equations-Part I
,”
Int. J. Appl. Math.
,
2
, pp.
865
882
.
19.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
2000
, “
On the Existence of the Order Domain and the Solution of Distributed Order Equations-Part II
,”
Int. J. Appl. Math.
,
2
, pp.
965
988
.
20.
Jiao
,
Z.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2012
,
Distributed Order Dynamic System Stability, Simulation and Perspective
,
Springer
,
London
.
21.
Li
,
J.
,
Liu
,
F.
,
Feng
,
L.
, and
Turner
,
I.
,
2017
, “
A Novel Finite Volume Method for the Riesz Space Distributed-Order Diffusion Equation
,”
Comput. Math. Appl.
,
74
, pp.
772
783
.
22.
Sokolov
,
I. M.
,
Chechkin
,
A. V.
, and
Klafter
,
J.
,
2004
, “
Distributed-Order Fractional Kinetics
,”
Acta Phys. Polo.
,
35
, pp.
1323
1341
.
23.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2003
, “
Fractional-Order System Identification Based on Continuous Order-Distributions
,”
Signal Process.
,
83
(
1
), pp.
2287
2300
.
24.
Zhou
,
F.
,
Zhao
,
Y.
,
Li
,
Y.
, and
Chen
,
Y. Q.
,
2013
, “
Design, Implementation and Application of Distributed Order PI Control
,”
ISA Trans.
,
52
, pp.
429
437
.
25.
Lazovic
,
G.
,
Vosika
,
Z.
,
Lazarevi
,
M.
,
Simic-Krsti
,
J.
, and
Koruga
,
D.
,
2014
, “
Modeling of Bioimpedance for Human Skin Based on Fractional Distributed-Order Modified Cole Model
,”
FME Trans.
,
42
, pp.
74
81
.
26.
Su
,
N.
,
Nelson
,
P. N.
, and
Connor
,
S.
,
2015
, “
The Distributed-Order Fractional Diffusion-Wave Equation of Groundwater Flow: Theory and Application to Pumping and Slug Tests
,”
J. Hydrol.
,
529
, pp.
1262
1273
.
27.
Atanackovic
,
T. M.
,
2002
, “
A Generalized Model for the Uniaxial Isothermal Deformation of a Viscoelastic Body
,”
Acta Mech.
,
159
, pp.
77
86
.
28.
Atanackovic
,
T. M.
,
Budincevic
,
M.
, and
Pilipovic
,
S.
,
2005
, “
On a Fractional Distributed Order Oscillator
,”
J. Phys. A, Math. Gen.
,
38
(
30
), pp.
6703
6713
.
29.
Atanackovic
,
T. M.
,
Pilipovic
,
S.
, and
Zorica
,
D.
,
2011
, “
Distributed Order Fractional Wave Equation on a Finite Domain.Stress Relaxation in a Rod
,”
Int. J. Eng. Sci
,
49
(
2
), pp.
175
190
.
30.
Aminikhah
,
H.
,
Sheikhani
,
A. H. R.
,
Houlari
,
T.
, and
Rezazadeh
,
H.
,
2017
, “
Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
,”
J. Autom. Sin.
, epub.
31.
Katsikadelis
,
J. T.
,
2014
, “
Numerical Solution of Distributed Order Fractional Differential Equations
,”
J. Comput. Phys.
,
259
, pp.
11
22
.
32.
Mashayekhi
,
S.
, and
Razzaghi
,
M.
,
2016
, “
Numerical Solution of Distributed Order Fractional Differential Equations by Hybrid Functions
,”
J. Comput. Phys.
,
315
, pp.
169
181
.
33.
Trung Duong
,
P. L.
,
Kwok
,
E.
, and
Lee
,
M.
,
2016
, “
Deterministic Analysis of Distributed Order Systems Using Operational Matrix
,”
Appl. Math. Model.
,
40
(
3
), pp.
1929
1940
.
34.
Mashoof
,
M.
, and
Refahi Sheikhani
,
A. H.
,
2017
, “
Simulating the Solution of the Distributed Order Fractional Differential Equations by Block-Pulse Wavelets
,”
UPB Sci. Bull., Ser. A: Appl. Math. Phys.
,
79
, pp.
193
206
.
35.
Semary
,
M. S.
,
Hassan
,
H. N.
, and
Radwan
,
A. G.
,
2018
, “
Modified Methods for Solving Two Classes of Distributed Order Linear Fractional Differential Equations
,”
Appl. Math. Comput.
,
323
, pp.
106
119
.
36.
Zhu
,
L.
, and
Fan
,
Q.
,
2012
, “
Solving Fractional Nonlinear Fredholm Integro-Differential Equations by the Second Kind Chebyshev Wavelet
,”
Commun. Nonlinear Sci. Num. Simul.
,
17
(
6
), pp.
2333
2341
.
37.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
, and
Mohammadi
,
F.
,
2014
, “
Legendre Wavelets Method for Solving Fractional Partial Differential Equations With Dirichlet Boundary Conditions
,”
Appl. Math. Comput.
,
276
, pp.
267
276
.
38.
Saeedi
,
H.
,
Mohseni Moghadam
,
M.
,
Mollahasani
,
N.
, and
Chuev
,
G. N.
,
2011
, “
A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order
,”
Commun. Nonlinear Sci. Num. Simul.
,
16
(
3
), pp.
1154
1163
.
39.
Li
,
Y.
, and
Zhao
,
W.
,
2010
, “
Haar Wavelet Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations
,”
Appl. Math. Comput.
,
216
(
8
), pp.
2276
2285
.
40.
Wang
,
X. T.
, and
Li
,
Y. M.
,
2009
, “
Numerical Solutions of Integro Differential Systems by Hybrid of General Block-Pulse Functions and the Second Chebyshev Polynomials
,”
Appl. Math. Comput.
,
209
(
2
), pp.
266
272
.
41.
Singh
,
V. K.
,
Pandey
,
R. K.
, and
Singh
,
S.
,
2010
, “
A Stable Algorithm for Hankel Transforms Using Hybrid of Block-Pulse and Legendre Polynomials
,”
Comput. Phys. Commun.
,
181
(
1
), pp.
1
10
.
42.
Marzban
,
H. R.
, and
Razzaghi
,
M.
,
2005
, “
Analysis of Time-Delay Systems Via Hybrid of Block-Pulse Functions and Taylor Series
,”
J. Vib. Control
,
11
(
12
), pp.
1455
1486
.
43.
Mashayekhi
,
S.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2012
, “
Hybrid Functions Approach for Nonlinear Constrained Optimal Control Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
4
), pp.
1831
1843
.
44.
Marzban
,
H. R.
,
2016
, “
Parameter Identification of Linear Multi-Delay Systems Via a Hybrid of Block-Pulse Functions and Taylors Polynomials
,”
Int. J. Control
,
90
(3), pp.
504
518
.
45.
Mashayekhi
,
S.
, and
Razzaghi
,
M.
,
2015
, “
Numerical Solution of Nonlinear Fractional Integro-Differential Equations by Hybrid Functions
,”
Eng. Anal. Bound. Elem.
,
56
, pp.
81
89
.
46.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2001
, “
Numerical Solution Methods for Distributed Order Differential Equations
,”
Fract. Calc. Appl. Anal.
,
4
, pp.
531
542
.
47.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
2006
,
Spectral Methods: Fundamentals in Single Domains
,
Springer
,
New York
.
48.
Mashayekhi
,
S.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2013
, “
A Hybrid Functions Approach for the Duffing Equation
,”
Phys. Scr.
,
888
(
2
), pp.
1
8
.
49.
Mashayekhi
,
S.
,
Razzaghi
,
M.
, and
Wattanataweekul
,
M.
,
2016
, “
Analysis of Multi-Delay and Piecewise Constant Delay Systems by Hybrid Functions Approximation
,”
Differ. Equations Dyn. Syst.
,
24
(
1
), pp.
1
20
.
50.
Mainardi
,
F.
,
Mura
,
A.
,
Goreno
,
R.
, and
Stojanovic
,
M.
,
2007
, “
The Two Form of Fractional Relaxation of Distributed Order
,”
J. Vib. Control
,
13
(
9–10
), pp.
1249
1268
.
51.
Podlubny
,
I.
,
Skovranek
,
T.
,
Vinagre Jara
,
B. M.
,
Petras
,
I.
,
Verbitsky
,
V.
, and
Chen
,
Y. Q.
,
2013
, “
Matrix Approach to Discrete Fractional Calculus—III: Non-Equidistant Grids, Variable Step Length and Distributed Orders
,”
Phil. Trans. R. Soc. A
,
371
(
1990
), p.
20120153
.
52.
Katsikadelis, J. T., 2012, “
The Fractional Distributed Order Oscillator. A Numerical Solution
,”
J. Serb. Soc. Comput. Mech.
,
6
(1), pp. 148–159.
You do not currently have access to this content.