This paper propounds addressing the design of a high gain observer optimization method in order to ensure a reliable state synchronization of nonlinear perturbed chaotic systems. The salient feature of the developed approach lies in the optimization of the high gain observer by using the optimal control theory associated with a proposed numerical algorithm. Thereby, an innovative quadratic optimization criterion is proposed to calculate the required optimal value of the observer setting parameter θ, characterizing the observation gain and corresponding to the minimal value of the cost function, by achieving a compromise between the correction term of the state observer and its observation error. Moreover, the exponential stability of the high gain observer is demonstrated within the Lyapunov framework. The efficacy of the designed approach is highlighted by numerical simulation on two prominent examples of nonlinear perturbed chaotic systems.

References

1.
Carroll
,
T. L.
, and
Pecora
,
L. M.
,
1991
, “
Synchronizing Chaotic Circuits
,”
IEEE Trans. Circuits Systems
,
38
(
4
), pp.
453
456
.
2.
Quan
,
B.
,
Wang
,
C.
,
Sun
,
J.
, and
Zhao
,
Y.
,
2018
, “
A Novel Adaptive Active Control Projective Synchronization of Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), pp.
51001
51009
.
3.
Aghababa
,
M. P.
, and
Hashtarkhani
,
B.
,
2015
, “
Synchronization of Unknown Uncertain Chaotic Systems Via Adaptive Control Method
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
51004
.
4.
Wang
,
T.
, and
Jia
,
N.
,
2012
, “
Chaos Control and Hybrid Projective Synchronization of Several New Chaotic Systems
,”
Appl. Math. Comput.
,
218
(
13
), pp.
7231
7240
.
5.
Ghamati
,
M.
, and
Balochian
,
S.
,
2015
, “
Design of Adaptive Sliding Mode Control for Synchronization Genesio–Tesi Chaotic System
,”
Chaos, Solitons Fractals
,
75
, pp.
111
117
.
6.
Hung
,
Y.-C.
,
Yan
,
J.-J.
, and
Liao
,
T.-L.
,
2008
, “
Projective Synchronization of Chua's Chaotic Systems With Dead-Zone in the Control Input
,”
Math. Computers Simul.
,
77
(
4
), pp.
374
382
.
7.
Anstett
,
F.
,
Millérioux
,
G.
, and
Bloch
,
G.
,
2009
, “
Polytopic Observer Design for Lpv Systems Based on Minimal Convex Polytope Finding
,”
J. Algorithms Comput. Technol.
,
3
(
1
), pp.
23
43
.
8.
Moisan
,
M.
, and
Bernard
,
O.
,
2010
, “
Robust Interval Observers for Global Lipschitz Uncertain Chaotic Systems
,”
Syst. Control Lett.
,
59
(
11
), pp.
687
694
.
9.
Han
,
X.
, and
Chang
,
X.
,
2012
, “
A Chaotic Digital Secure Communication Based on a Modified Gravitational Search Algorithm Filter
,”
Inf. Sci.
,
208
, pp.
14
27
.
10.
Boccaletti
,
S.
,
Kurths
,
J.
,
Osipov
,
G.
,
Valladares
,
D.
, and
Zhou
,
C.
,
2002
, “
The Synchronization of Chaotic Systems
,”
Phys. Rep.
,
366
(
1–2
), pp.
1
101
.
11.
Veluvolu
,
K. C.
, and
Soh
,
Y. C.
,
2099
, “
High-Gain Observers With Sliding Mode for State and Unknown Input Estimations
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3386
3393
.
12.
Zhou
,
Y.
,
Soh
,
Y.
, and
Shen
,
J.
,
2014
, “
High-Gain Observer With Higher Order Sliding Mode for State and Unknown Disturbance Estimations
,”
Int. J. Robust Nonlinear Control
,
24
(
15
), pp.
2136
2151
.
13.
Yang
,
J.
, and
Zhu
,
F.
,
2015
, “
Fdi Design for Uncertain Nonlinear Systems With Both Actuator and Sensor Faults
,”
Asian J. Control
,
17
(
1
), pp.
213
224
.
14.
Aguilar-López
,
R.
,
Martínez-Guerra
,
R.
, and
Perez-Pinacho
,
C. A.
,
2014
, “
Nonlinear Observer for Synchronization of Chaotic Systems With Application to Secure Data Transmission
,”
Eur. Phys. J. Spec. Top.
,
223
(
8
), pp.
1541
1548
.
15.
Luo, R., and Yanhui, Z., 2016, “
The Control and Synchronization of a Class of Chaotic Systems With Output Variable and External Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(5), p. 051011.
16.
Shi
,
Z.
,
Hong
,
S.
, and
Chen
,
K.
,
2008
, “
Experimental Study on Tracking the State of Analog Chua's Circuit With Particle Filter for Chaos Synchronization
,”
Phys. Lett. A
,
372
(
34
), pp.
5575
5580
.
17.
Wang
,
X.-Y.
, and
Fan
,
B.
,
2012
, “
Generalized Projective Synchronization of a Class of Hyperchaotic Systems Based on State Observer
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
2
), pp.
953
963
.
18.
Senejohnny
,
D. M.
, and
Delavari
,
H.
,
2012
, “
Active Sliding Observer Scheme Based Fractional Chaos Synchronization
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4373
4383
.
19.
Hua
,
C.
,
Guan
,
X.
,
Li
,
X.
, and
Shi
,
P.
,
2004
, “
Adaptive Observer-Based Control for a Class of Chaotic Systems
,”
Chaos, Solitons Fractals
,
22
(
1
), pp.
103
110
.
20.
Roopaei
,
M.
, and
Argha
,
A.
,
2011
, “
Novel Adaptive Sliding Mode Synchronization in a Class of Chaotic Systems
,”
World Appl. Sci. J.
,
12
(
12
), pp.
2210
2217
.https://pdfs.semanticscholar.org/b05f/2309aa8f485a9170cf2fcd0d184338c0ad76.pdf
21.
Zhu
,
F.
,
2008
, “
Full-Order and Reduced-Order Observer-Based Synchronization for Chaotic Systems With Unknown Disturbances and Parameters
,”
Phys. Lett. A
,
372
(
3
), pp.
223
232
.
22.
Shahnazi
,
R.
,
Haghani
,
A.
, and
Jeinsch
,
T.
,
2015
, “
Adaptive Fuzzy Observer-Based Stabilization of a Class of Uncertain Time-Delayed Chaotic Systems With Actuator Nonlinearities
,”
Chaos, Solitons Fractals
,
76
, pp.
98
110
.
23.
Alvarez
,
G.
, and
Li
,
S.
,
2006
, “
Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems
,”
Int. J. Bifurcation Chaos
,
16
(
8
), pp.
2129
2151
.
24.
Bowong
,
S.
,
Kakmeni
,
F. M.
, and
Fotsin
,
H.
,
2006
, “
A New Adaptive Observer-Based Synchronization Scheme for Private Communication
,”
Phys. Lett. A
,
355
(
3
), pp.
193
201
.
25.
Chen
,
F.
, and
Zhang
,
W.
,
2007
, “
Lmi Criteria for Robust Chaos Synchronization of a Class of Chaotic Systems
,”
Nonlinear Anal.: Theory, Methods Appl.
,
67
(
12
), pp.
3384
3393
.
26.
Okamoto
,
T.
, and
Hirata
,
H.
,
2013
, “
Constrained Optimization Using a Multipoint Type Chaotic Lagrangian Method With a Coupling Structure
,”
Eng. Optim.
,
45
(
3
), pp.
311
336
.
27.
Bowong
,
S.
,
Kakmeni
,
F. M.
, and
Siewe
,
M. S.
,
2007
, “
Secure Communication Via Parameter Modulation in a Class of Chaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
3
), pp.
397
410
.
28.
Chen
,
C.-S.
,
2010
, “
Optimal Nonlinear Observers for Chaotic Synchronization With Message Embedded
,”
Nonlinear Dyn.
,
61
(
4
), pp.
623
632
.
29.
Tsai
,
J.
,
Wu
,
C.
,
Lee
,
C.
,
Guo
,
S.
, and
Su
,
T.
,
2016
, “
A New Optimal Linear Quadratic Observer-Based Tracker Under Input Constraint for the Unknown System With a Direct Feed-Through Term
,”
Optimal Control Appl. Methods
,
37
(
1
), pp.
34
71
.
30.
Ma
,
J.
,
Zhang
,
A.-H.
,
Xia
,
Y.-F.
, and
Zhang
,
L.-P.
,
2010
, “
Optimize Design of Adaptive Synchronization Controllers and Parameter Observers in Different Hyperchaotic Systems
,”
Appl. Math. Comput.
,
215
(
9
), pp.
3318
3326
.
31.
Poznyak
,
A.
,
Nazin
,
A.
, and
Murano
,
D.
,
2004
, “
Observer Matrix Gain Optimization for Stochastic Continuous Time Nonlinear Systems
,”
Syst. Control Lett.
,
52
(
5
), pp.
377
385
.
32.
Shirazi
,
M. J.
,
Vatankhah
,
R.
,
Boroushaki
,
M.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2012
, “
Application of Particle Swarm Optimization in Chaos Synchronization in Noisy Environment in Presence of Unknown Parameter Uncertainty
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
2
), pp.
742
753
.
33.
Kim
,
J.
, and
Jin
,
M.
,
2016
, “
Synchronization of Chaotic Systems Using Particle Swarm Optimization and Time-Delay Estimation
,”
Nonlinear Dyn.
,
86
(
3
), pp.
2003
2015
.
34.
Sun
,
Y.
,
Wang
,
Z.
,
Qi
,
G.
, and
Van Wyk
,
B.
,
2011
, “
Chaotic Particle Swarm Optimization With Neural Network Structure and Its Application
,”
Eng. Optim.
,
43
(
1
), pp.
19
37
.
35.
Chen
,
C.-S.
,
2010
, “
Chaotic Secure Communication With Quadratic Optimal Performance Via Lmi-Based Observer Design
,”
Int. J. Bifurcation Chaos
,
20
(
10
), pp.
3311
3322
.
36.
Daldoul
,
I.
, and
Tlili
,
A. S.
,
2017
, “
Non-Dominated Sorting Genetic Algorithm for the High Gain Observer Optimization. application to Chaos Synchronization
,”
18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering
(
STA'2017
), Monastir, Tunisia, Dec. 21–23, pp.
384
389
.
37.
Gauthier
,
J. P.
,
Hammouri
,
H.
, and
Othman
,
S.
,
1992
, “
A Simple Observer for Nonlinear Systems Applications to Bioreactors
,”
JIEEE Trans. Automatic Control
,
37
(
6
), pp.
875
880
.
38.
Cherrier
,
E.
,
M'Saad
,
M.
, and
Farza
,
M.
,
2010
, “
High Gain Observer Synchronization for a Class of Time-Delay Chaotic Systems. application to Secure Communications
,”
J. Nonlinear Syst. Appl.
,
1
(
3
), pp.
102
112
.https://hal.archives-ouvertes.fr/hal-01060018/document
39.
Srivastava
,
M.
,
Agrawal
,
S. K.
, and
Das
,
S.
,
2013
, “
Adaptive Projective Synchronization Between Different Chaotic Systems With Parametric Uncertainties and External Disturbances
,”
Pramana
,
81
(
3
), pp.
417
437
.
40.
Lyapunov
,
A. M.
,
1992
, “
The General Problem of the Stability of Motion
,”
Int. J. Control
,
55
(
3
), pp.
531
534
.
41.
Yang
,
X.-S.
, and
Deb
,
S.
,
2010
, “
Engineering Optimisation by Cuckoo Search
,”
Int. J. Math. Modell. Numer. Optim.
,
1
(
4
), pp.
330
343
.
42.
BoussaïD
,
I.
,
Lepagnot
,
J.
, and
Siarry
,
P.
,
2013
, “
A Survey on Optimization Metaheuristics
,”
Inf. Sci.
,
237
(
5
), pp.
82
117
.
43.
Bowong
,
S.
,
2004
, “
Stability Analysis for the Synchronization of Chaotic Systems With Different Order: Application to Secure Communications
,”
Phys. Lett. A
,
326
(
1–2
), pp.
102
113
.
44.
Xu
,
F.
, and
Yu
,
P.
,
2010
, “
Chaos Control and Chaos Synchronization for Multi-Scroll Chaotic Attractors Generated Using Hyperbolic Functions
,”
J. Math. Anal. Appl.
,
362
(
1
), pp.
252
274
.
45.
Cherrier
,
E.
,
Boutayeb
,
M.
, and
Ragot
,
J.
,
2006
, “
Observers-Based Synchronization and Input Recovery for a Class of Nonlinear Chaotic Models
,”
IEEE Trans. Circuits Syst. I: Regular Papers
,
53
(
9
), pp.
1977
1988
.
46.
Jia
,
Q.
,
2007
, “
Hyperchaos Generated From the Lorenz Chaotic System and Its Control
,”
Phys. Lett. A
,
366
(
3
), pp.
217
222
.
47.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet Another Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
9
(
7
), pp.
1465
1466
.
48.
Čelikovsky`
,
S.
, and
Chen
,
G.
,
2002
, “
On a Generalized Lorenz Canonical Form of Chaotic Systems
,”
Int. J. Bifurcation Chaos
,
12
(
8
), pp.
1789
1812
.
49.
,
J.
, and
Chen
,
G.
,
2002
, “
A New Chaotic Attractor Coined
,”
Int. J. Bifurcation Chaos
,
12
(
3
), pp.
659
661
.
50.
,
J.
,
Chen
,
G.
,
Cheng
,
D.
, and
Celikovsky
,
S.
,
2002
, “
Bridge the Gap Between the Lorenz System and the Chen System
,”
Int. J. Bifurcation Chaos
,
12
(
12
), pp.
2917
2926
.
51.
Lu
,
J.
,
Wu
,
X.
, and
,
J.
,
2002
, “
Synchronization of a Unified Chaotic System and the Application in Secure Communication
,”
Phys. Lett. A
,
305
(
6
), pp.
365
370
.
You do not currently have access to this content.