Stability of a dynamical system may change from stable to unstable or vice versa, with the change of some parameter of the system. This is the phenomenon of stability switches, and it has been investigated intensively in the literature for conventional time-delay systems. This paper studies the stability switches of a class of fractional-delay systems whose coefficients depend on the time delay. Two simple formulas in closed-form have been established for determining the crossing direction of the characteristic roots at a given critical point, which is one of the two key steps in the analysis of stability switches. The formulas are expressed in terms of the Jacobian determinant of two auxiliary real-valued functions that are derived directly from the characteristic function, and thus, can be easily implemented. Two examples are given to illustrate the main results and to show an important difference between the fractional-delay systems with delay-dependent coefficients and the ones with delay-free coefficients from the viewpoint of stability switches.

References

1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
2.
Magin
,
R. L.
,
2004
, “
Fractional Calculus in Bioengineering
,”
Crit. Rev. Biomed. Eng.
,
32
(
2
), pp.
1
104
.
3.
Lima
,
M. F. M.
,
Machado
,
J. A. T.
, and
Crisóstomo
,
M.
,
2008
, “
Fractional Dynamics in Mechanical Manipulation
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021203
.
4.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. A.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
0108011
.
5.
Monje
,
C. A.
,
Vinagre
,
B. M.
,
Chen
,
Y. Q.
,
Xue
,
D. Y.
, and
Feliu
,
V.
,
2010
,
Fractional Order Systems and Controls: Fundamentals and Applications
,
Springer-Verlag
,
Berlin
.
6.
Du
,
M. L.
,
Wang
,
Z. H.
, and
Hu
,
H. Y.
,
2013
, “
Measuring Memory With the Order of Fractional Derivative
,”
Sci. Rep.
,
3
(
1
), p.
3431
.
7.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional Order State Equations for the Control of Viscoelastically Damped Structures
,”
Journal of Guidance, Control, and Dynamics
,
14
(2), pp. 304–311.
8.
Koeller
,
R. C.
,
1984
, “
Application of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
299
307
.
9.
Glockle
,
W. G.
, and
Nonnenmacher
,
T. F.
,
1995
, “
A Fractional Calculus Approach to Self-Similar Protein Dynamics
,”
Biophys. J.
,
68
(
1
), pp.
46
53
.
10.
Shi
,
M.
, and
Wang
,
Z. H.
,
2014
, “
Abundant Bursting Patterns of a Fractional-Order Morrisclecar Neuron Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
6
), pp.
1956
1969
.
11.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Comput. Eng. Syst. Appl.
,
2
, pp.
963
968
.https://pdfs.semanticscholar.org/779d/84a8593dfba2bb6d8837057a2594b91cb87a.pdf
12.
Coronado
,
A.
,
Trindade
,
M. A.
, and
Sampaio
,
R.
,
2002
, “
Frequency-Dependent Viscoelastic Models for Passive Vibration Isolation Systems
,”
Shock Vib.
,
9
(
4–5
), pp.
253
264
.
13.
Magin
,
R. L.
,
2010
, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1586
1593
.
14.
Yang
,
J. H.
,
Sanjun
,
M. A. F.
,
Liu
,
H.
, and
Cheng
,
G.
,
2015
, “
Bifurcation Transition and Nonlinear Response in a Fractional-Order System
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061017
.
15.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2007
, “
Stabilization of Some Fractional Delay Systems of Neutral Type
,”
Automatica
,
42
(
12
), pp.
2047
2053
.
16.
Buslowicz
,
M.
,
2008
, “
Stability of Linear Continuous-Time Fractional Order Systems With Delays of the Retarded Type
,”
Bull. Pol. Acad. Sci. Tech. Sci.
,
56
(4), pp.
319
324
.http://fluid.ippt.gov.pl/bulletin/(56-4)319.pdf
17.
Shi
,
M.
, and
Wang
,
Z. H.
,
2011
, “
An Effective Analytical Criterion for Stability Testing of Fractional-Delay Systems
,”
Automatica
,
47
(
9
), pp.
2001
2005
.
18.
Chen
,
Y. Q.
, and
More
,
K. L.
,
2002
, “
Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems
,”
Nonlinear Dyn.
,
29
, pp.
191
200
.
19.
Hwang
,
C.
, and
Cheng
,
Y. C.
,
2006
, “
A Numerical Algorithm for Stability Testing of Fractional Delay Systems
,”
Automatica
,
42
(
5
), pp.
825
831
.
20.
Wang
,
Z. H.
,
Du
,
M. L.
, and
Shi
,
M.
,
2011
, “
Stability Test of Fractional-Delay Systems Via Integration
,”
Sci. China Phys. Mech. Astron.
,
54
(
10
), pp.
1839
1846
.
21.
Xu
,
Q.
,
Shi
,
M.
, and
Wang
,
Z. H.
,
2016
, “
Stability and Delay Sensitivity of Neutral Fractional-Delay Systems
,”
Chaos
,
26
(
8
), p.
084301
.
22.
Milano
,
F.
, and
Dassios
,
I.
,
2016
, “
Small-Signal Stability Analysis for Non-Index 1 Hessenberg Form Systems of Delay Differential-Algebraic Equations
,”
IEEE Trans. Circuits Syst. I Regular Papers
,
63
(
9
), pp.
1521
1530
.
23.
Erneux
,
T.
,
2009
,
Applied Delay Differential Equations
,
Springer-Verlag
,
Berlin
.
24.
Wang
,
Z. H.
, and
Xu
,
Q.
,
2017
, “
Sway Reduction of a Pendulum on a Movable Support Using a Delayed Proportional-Derivative or Derivative-Acceleration Feedback
,”
Procedia IUTAM
,
22
, pp.
176
183
.
25.
Liu
,
X. B.
,
Vlajic
,
N.
,
Long
,
X. H.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
State-Dependent Delay Influenced Drill-String Oscillations and Stability Analysis
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
051008
.
26.
Cookea
,
K. L.
, and
Grossmanb
,
Z.
,
1982
, “
Discrete Delay, Distributed Delay and Stability Switches
,”
J. Math. Anal. Appl.
,
86
(
2
), pp.
592
627
.
27.
Kuang
,
Y.
,
1993
,
Delay Differential Equations: With Applications in Population Dynamics
,
Academic Press
,
San Diego, CA
.
28.
Sonmez
,
S.
,
Ayasun
,
S.
, and
Nwankpa
,
C. O.
,
2015
, “
An Exact Method for Computing Delay Margin for Stability of Load Frequency Control Systems With Constant Communication Delays
,”
IEEE Trans. Power Syst.
,
31
(
1
), pp.
370
377
.
29.
Beretta
,
E.
,
2002
, “
Geometric Stability Switch Criteria in Delay Differential Systems With Delay-Dependent Parameters
,”
SIAM J. Math. Anal.
,
33
(
5
), pp.
1144
1165
.
30.
Wang
,
Z. H.
,
2012
, “
A Very Simple Criterion for Characterizing the Crossing Direction of Time-Delay Systems With Delay-Dependent Parameters
,”
Int. J. Bifurcation Chaos
,
22
(
3
), p.
1250058
.
31.
Beretta
,
E.
, and
Yang
,
K.
,
2001
, “
Modeling and Analysis of a Marine Bacteriophage Infection With Latency Period
,”
Nonlinear Anal. Real World Appl.
,
2
(
1
), pp.
35
74
.
32.
Tass
,
P.
,
Kurths
,
J.
,
Rosenblum
,
M. G.
,
Guasti
,
G.
, and
Hefter
,
H.
,
1996
, “
Delay-Induced Transitions in Visually Guided Movements
,”
Phys. Rev. E
,
54
(
3
), pp.
R2224
R2227
.
33.
Hollot
,
C. V.
,
Misra
,
V.
,
Towsley
,
D.
, and
Gong
,
W. B.
,
2002
, “
Analysis and Design of Controllers for AQM Routers Supporting TCP Flows
,”
IEEE Trans. Automatic Control
,
47
, pp.
945
959
.
34.
Xu
,
X.
,
Hu
,
H. Y.
, and
Wang
,
H. L.
,
2006
, “
Stability Switches, Hopf Bifurcation and Chaos of a Neuron Model With Delay-Dependent Parameters
,”
Phys. Lett. A
,
354
(
1–2
), pp.
126
136
.
35.
Ramirez
,
A.
, and
Sipahi
,
R.
,
2017
, “
Design of a Delay-Based Controller for Fast Stabilization in a Network System With Input Delays Via the Lambert w Function
,”
Procedia IUTAM
,
22
, pp.
83
90
.
36.
Verriest
,
E. I.
,
2017
, “
The Principle of Borrowed Feedback and Application to Control and Observation for Systems With Implicit State Dependent Delay
,”
Time Delay Systems: Theory, Numerics, Applications, and Experiments
, 1st ed., Vol.
7
,
T.
Insperger
,
T.
Ersal
, and
G.
Orozs
, eds.,
Springer International Publishing AG
,
Cham, Switzerland
, pp.
47
61
.
37.
Yu
,
Y. J.
, and
Wang
,
Z. H.
,
2013
, “
A Fractional-Order Phase-Locked Loop With Time Delay and Its Hopf Bifurcation
,”
Chin. Phys. Lett.
,
30
(
11
), pp.
468
477
.
38.
Lazarevic
,
M. P.
,
2006
, “
Finite Time Stability Analysis of PD Fractional Control of Robotic Time-Delay Systems
,”
Mech. Res. Commun.
,
33
(
2
), pp.
269
279
.
39.
Xiao
,
M.
, and
Cao
,
J. D.
,
2010
,
Range Parameter Induced Bifurcation in a Single Neuron Model With Delay-Dependent Parameters
,
Springer
,
Berlin
.
You do not currently have access to this content.