The application of the proper orthogonal decomposition (POD) method to the vibration response of a cracked rotor system is investigated. The covariance matrices of the horizontal and vertical whirl amplitudes are formulated based on the numerical and experimental whirl response data for the considered cracked rotor system. Accordingly, the POD is directly applied to the obtained covariance matrices where the proper orthogonal values (POVs), and the proper orthogonal modes (POMs) are obtained for various crack depths, unbalance force vector angles, and rotational speeds. It is observed that both POVs and their corresponding POMs are highly sensitive to the appearance of the crack and the unbalance force angle direction in the neighborhoods of the critical rotational speeds. The sensitivity zones of the POVs and POMs to the crack propagation are found to be coinciding with the unstable zones found by the Floquet's theory of the considered cracked system.

References

1.
Al-Shudeifat
,
M. A.
, and
Butcher
,
E. A.
,
2011
, “
New Breathing Functions for the Transverse Breathing Crack of the Cracked Rotor System: Approach for Critical and Subcritical Harmonic Analysis
,”
J. Sound Vib.
,
330
(
3
), pp.
526
544
.
2.
Kumar
,
V. S.
,
Harikrishna
,
C.
,
Sai
,
C. K.
, and
Nagaraju
,
C.
,
2015
, “
Dynamic Analysis of a Cracked Rotor—An Experimental and Finite Element Investigation
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
2131
2136
.
3.
Sinou
,
J.-J.
, and
Lees
,
A.
,
2005
, “
The Influence of Cracks in Rotating Shafts
,”
J. Sound Vib.
,
285
(
4–5
), pp.
1015
1037
.
4.
Al-Shudeifat
,
M. A.
,
2015
, “
Stability Analysis and Backward Whirl Investigation of Cracked Rotors With Time-Varying Stiffness
,”
J. Sound Vib.
,
348
, pp.
365
380
.
5.
Al-Shudeifat
,
M. A.
,
2013
, “
On the Finite Element Modeling of the Asymmetric Cracked Rotor
,”
J. Sound Vib.
,
332
(
11
), pp.
2795
2807
.
6.
Al-Shudeifat
,
M. A.
,
Butcher
,
E. A.
, and
Stern
,
C. R.
,
2010
, “
General Harmonic Balance Solution of a Cracked Rotor-Bearing-Disk System for Harmonic and Sub-Harmonic Analysis: Analytical and Experimental Approach
,”
Int. J. Eng. Sci.
,
48
(
10
), pp.
921
935
.
7.
Sinou
,
J.-J.
, and
Lees
,
A.
,
2007
, “
A Non-Linear Study of a Cracked Rotor
,”
Eur. J. Mech. A
,
26
(
1
), pp.
152
170
.
8.
Sawicki
,
J. T.
,
Friswell
,
M. I.
,
Kulesza
,
Z.
,
Wroblewski
,
A.
, and
Lekki
,
J. D.
,
2011
, “
Detecting Cracked Rotors Using Auxiliary Harmonic Excitation
,”
J. Sound Vib.
,
330
(
7
), pp.
1365
1381
.
9.
Sinou
,
J.-J.
,
2007
, “
Effects of a Crack on the Stability of a Non-Linear Rotor System
,”
Int. J. Non-Linear Mech.
,
42
(
7
), pp.
959
972
.
10.
Sekhar
,
A.
, and
Prabhu
,
B.
,
1994
, “
Transient Analysis of a Cracked Rotor Passing Through Critical Speed
,”
J. Sound Vib.
,
173
(
3
), pp.
415
421
.
11.
Sekhar
,
A.
,
2004
, “
Crack Identification in a Rotor System: A Model-Based Approach
,”
J. Sound Vib.
,
270
(
4–5
), pp.
887
902
.
12.
Sekhar
,
A.
,
1999
, “
Vibration Characteristic of a Cracked Rotor With Two Open Cracks
,”
J. Sound Vib.
,
223
(
4
), pp.
497
512
.
13.
Sekhar
,
A.
,
Mohanty
,
A.
, and
Prabhakar
,
S.
,
2005
, “
Vibrations of Cracked Rotor System: Transverse Crack Versus Slant Crack
,”
J. Sound Vib.
,
279
(
3–5
), pp.
1203
1217
.
14.
Sekhar
,
A.
, and
Prabhu
,
B.
,
1994
, “
Vibration and Stress Fluctuation in Cracked Shafts
,”
J. Sound Vib.
,
169
(
5
), pp.
655
667
.
15.
Dharmaraju
,
N.
,
Tiwari
,
R.
, and
Talukdar
,
S.
,
2004
, “
Identification of an Open Crack Model in a Beam Based on Force–Response Measurements
,”
Comput. Struct.
,
82
(
2–3
), pp.
167
179
.
16.
Silani
,
M.
,
Ziaei-Rad
,
S.
, and
Talebi
,
H.
,
2013
, “
Vibration Analysis of Rotating Systems With Open and Breathing Cracks
,”
Appl. Math. Modell.
,
37
(
24
), pp.
9907
9921
.
17.
Gounaris
,
G. D.
, and
Papadopoulos
,
C. A.
,
2002
, “
Crack Identification in Rotating Shafts by Coupled Response Measurements
,”
Eng. Fract. Mech.
,
69
(
3
), pp.
339
352
.
18.
Green
,
I.
, and
Casey
,
C.
,
2003
, “
Crack Detection in a Rotor Dynamic System by Vibration Monitoring—Part I: Analysis
,”
ASME
Paper No. GT2003-38659
.
19.
Jun
,
O. S.
, and
Gadala
,
M. S.
,
2008
, “
Dynamic Behavior Analysis of Cracked Rotor
,”
J. Sound Vib.
,
309
(
1–2
), pp.
210
245
.
20.
Xiang
,
J.
,
Chen
,
X.
,
Mo
,
Q.
, and
He
,
Z.
,
2007
, “
Identification of Crack in a Rotor System Based on Wavelet Finite Element Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1068
1081
.
21.
Kulesza
,
Z.
,
2014
, “
Dynamic Behavior of Cracked Rotor Subjected to Multisine Excitation
,”
J. Sound Vib.
,
333
(
5
), pp.
1369
1378
.
22.
Babu
,
T. R.
,
Srikanth
,
S.
, and
Sekhar
,
A.
,
2008
, “
Hilbert–Huang Transform for Detection and Monitoring of Crack in a Transient Rotor
,”
Mech. Syst. Signal Process.
,
22
(
4
), pp.
905
914
.
23.
Guo
,
D.
, and
Peng
,
Z.
,
2007
, “
Vibration Analysis of a Cracked Rotor Using Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
8
), pp.
3030
3041
.
24.
Szolc
,
T.
,
Tauzowski
,
P.
,
Stocki
,
R.
, and
Knabel
,
J.
,
2009
, “
Damage Identification in Vibrating Rotor-Shaft Systems by Efficient Sampling Approach
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1615
1633
.
25.
Yang
,
Y.
,
Chen
,
H.
, and
Jiang
,
T.
,
2015
, “
Nonlinear Response Prediction of Cracked Rotor Based on EMD
,”
J. Franklin Inst.
,
352
(
8
), pp.
3378
3393
.
26.
Guo
,
C.
,
AL-Shudeifat
,
M. A.
,
Yan
,
J.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Butcher
,
E. A.
,
2013
, “
Application of Empirical Mode Decomposition to a Jeffcott Rotor With a Breathing Crack
,”
J. Sound Vib.
,
332
(
16
), pp.
3881
3892
.
27.
Gao
,
Q.
,
Duan
,
C.
,
Fan
,
H.
, and
Meng
,
Q.
,
2008
, “
Rotating Machine Fault Diagnosis Using Empirical Mode Decomposition
,”
Mech. Syst. Signal Process.
,
22
(
5
), pp.
1072
1081
.
28.
Singh
,
S.
, and
Tiwari
,
R.
,
2016
, “
Model-Based Switching-Crack Identification in a Jeffcott Rotor With an Offset Disk Integrated With an Active Magnetic Bearing
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
3
), p.
031006
.
29.
Guo
,
C.
,
Yan
,
J.
, and
Yang
,
W.
,
2017
, “
Crack Detection for a Jeffcott Rotor With a Transverse Crack: An Experimental Investigation
,”
Mech. Syst. Signal Process.
,
83
, pp.
260
271
.
30.
Cheng
,
L.
,
Li
,
N.
,
Chen
,
X.-F.
, and
He
,
Z.-J.
,
2011
, “
The Influence of Crack Breathing and Imbalance Orientation Angle on the Characteristics of the Critical Speed of a Cracked Rotor
,”
J. Sound Vib.
,
330
(
9
), pp.
2031
2048
.
31.
Liang
,
Y.
,
Lee
,
H.
,
Lim
,
S.
,
Lin
,
W.
,
Lee
,
K.
, and
Wu
,
C.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
32.
Han
,
S.
, and
Feeny
,
B.
,
2002
, “
Enhanced Proper Orthogonal Decomposition for the Modal Analysis of Homogeneous Structures
,”
J. Vib. Control
,
8
(
1
), pp.
19
40
.
33.
Feeny
,
B.
,
2002
, “
On Proper Orthogonal Co-Ordinates as Indicators of Modal Activity
,”
J. Sound Vib.
,
255
(
5
), pp.
805
817
.
34.
Feeny
,
B.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.
35.
Lenaerts
,
V.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2001
, “
Proper Orthogonal Decomposition for Model Updating of Non-Linear Mechanical Systems
,”
Mech. Syst. Signal Process.
,
15
(
1
), pp.
31
43
.
36.
Kerschen
,
G.
,
Golinval
,
J.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
147
169
.
37.
Lu
,
K.
,
Yu
,
H.
,
Chen
,
Y.
,
Cao
,
Q.
, and
Hou
,
L.
,
2015
, “
A Modified Nonlinear POD Method for Order Reduction Based on Transient Time Series
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1195
1206
.
38.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, Cambridge, UK.
39.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley
,
New York
.
40.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
You do not currently have access to this content.