A systematic theoretical approach is presented, revealing dynamics of a class of multibody systems. Specifically, the motion is restricted by a set of bilateral constraints, acting simultaneously with a unilateral constraint, representing a frictional impact. The analysis is carried out within the framework of Analytical Dynamics and uses some concepts of differential geometry, which provides a foundation for applying Newton's second law. This permits a successful and illuminating description of the dynamics. Starting from the unilateral constraint, a boundary is defined, providing a subspace of allowable motions within the original configuration manifold. Then, the emphasis is focused on a thin boundary layer. In addition to the usual restrictions imposed on the tangent space, the bilateral constraints cause a correction of the direction where the main impulse occurs. When friction effects are negligible, the dominant action occurs along this direction and is described by a single nonlinear ordinary differential equation (ODE), independent of the number of the original generalized coordinates. The presence of friction increases this to a system of three ODEs, capturing the essential dynamics in an appropriate subspace, arising by bringing the image of the friction cone from the physical to the configuration space. Moreover, it is shown that the classical Darboux–Keller approach corresponds to a special case of the new method. Finally, the theoretical results are complemented by a selected set of numerical results for three examples.

References

1.
Lanczos
,
C.
,
1952
,
The Variational Principles of Mechanics
,
University of Toronto Press
,
Toronto, ON, Canada
.
2.
Pars
,
L. A.
,
1965
,
A Treatise on Analytical Dynamics
,
Heinemann Educational Books
,
London
.
3.
Rosenberg
,
R. M.
,
1977
,
Analytical Dynamics of Discrete Systems
,
Plenum Press
,
New York
.
4.
Greenwood
,
D. T.
,
1988
,
Principles of Dynamics
,
Prentice Hall
,
Englewood Cliffs, NJ
.
5.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1996
,
Analytical Dynamics a New Approach
,
Cambridge University Press
,
Cambridge, UK
.
6.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
,
Springer-Verlag
,
New York
.
7.
Routh
,
E. J.
,
1897
,
Dynamics of a System of Rigid Bodies
, 6th ed.,
Macmillan
,
London
.
8.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
9.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
1996
,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
10.
Brogliato
,
B.
,
2016
,
Νonsmooth Mechanics: Models, Dynamics and Control
, 3rd ed.,
Springer-Verlag
,
London
.
11.
Khulief
,
Y. A.
,
2013
, “
Modeling of Impact in Multibody Systems: An Overview
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021012
.
12.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.
13.
Hartog
,
J. P. D.
, and
Mikina
,
S. J.
,
1932
, “
Forced Vibrations With Non-Linear Spring Constants
,”
ASME J. Appl. Mech.
,
58
, pp.
157
164
.
14.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1966
, “
On the Stability of the Impact Damper
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
586
592
.
15.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
.
16.
Natsiavas
,
S.
,
1989
, “
Periodic Response and Stability of Oscillators With Symmetric Trilinear Restoring Force
,”
J. Sound Vib.
,
134
(
2
), pp.
315
331
.
17.
Babitsky
,
V. I.
,
1998
,
Theory of Vibro-Impact Systems and Applications
,
Springer-Verlag
,
Berlin
.
18.
Moreau
,
J. J.
, and
Panagiotopoulos
,
P. D.
, eds.,
1988
,
Nonsmooth Mechanics and Applications, CISM Courses and Lectures
, Vol.
302
,
Springer-Verlag
,
Vienna, Austria
.
19.
Glocker
,
C.
,
2001
,
Set-Valued Force Laws, Dynamics of Non-Smooth Systems
,
Springer
,
Berlin
.
20.
Leine
,
R. I.
, and
Nijmeijer
,
H.
,
2013
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
,
Springer-Verlag
,
Berlin
.
21.
Keller
,
J. B.
,
1986
, “
Impact With Friction
,”
ASME J. Appl. Mech.
,
53
(
1
), pp.
1
4
.
22.
Batlle
,
J. A.
, and
Condomines
,
A. B.
,
1991
, “
Rough Collisions in Multibody Systems
,”
Mech. Mach. Theory
,
26
, pp.
565
577
.
23.
Stronge
,
W. J.
,
2001
, “
Generalized Impulse and Momentum Applied to Multibody Impact With Friction
,”
Mech. Struct. Mach.
,
29
(
2
), pp.
239
260
.
24.
Zhao
,
Z.
, and
Liu
,
C.
,
2007
, “
The Analysis and Simulation for Three-Dimensional Impact With Friction
,”
Multibody Syst. Dyn.
,
18
(
4
), pp.
511
530
.
25.
Elkaranshawy
,
H. A.
,
Abdelrazek
,
A. M.
, and
Ezzat
,
H. M.
,
2017
, “
Tangential Velocity During Impact With Friction in Three-Dimensional Rigid Multibody Systems
,”
Nonlinear Dyn.
,
90
(
2
), pp.
1443
1459
.
26.
Aghili
,
F.
,
2011
, “
Control of Redundant Mechanical Systems Under Equality and Inequality Constraints on Both Input and Constraint Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031013
.
27.
Brogliato
,
B.
,
2014
, “
Kinetic Quasi-Velocities in Unilaterally Constrained Lagrangian Mechanics With Impacts and Friction
,”
Multibody Syst. Dyn.
,
32
(
2
), pp.
175
216
.
28.
Paraskevopoulos
,
E.
, and
Natsiavas
,
S.
,
2013
, “
On Application of Newton's Law to Mechanical Systems With Motion Constraints
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
455
475
.
29.
Natsiavas
,
S.
, and
Paraskevopoulos
,
E.
,
2015
, “
A Set of Ordinary Differential Equations of Motion for Constrained Mechanical Systems
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1911
1938
.
30.
Paraskevopoulos
,
E.
, and
Natsiavas
,
S.
,
2017
, “
A Geometric Solution to the General Single Contact Frictionless Problem by Combining Concepts of Analytical Dynamics and b-Calculus
,”
Int. J. Non-Linear Mech.
,
95
, pp.
117
131
.
31.
Natsiavas
,
S.
, and
Paraskevopoulos
,
E.
,
2018
, “
An Analytical Dynamics Approach for Mechanical Systems Involving a Single Frictional Contact Using b-Geometry
,”
Int. J. Solids Struct.
,
148–149
, pp.
140
156
.
32.
Papastavridis
,
J. G.
,
1999
,
Tensor Calculus and Analytical Dynamics
,
CRC Press
,
Boca Raton, FL
.
33.
Frankel
,
T.
,
1997
,
The Geometry of Physics: An Introduction
,
Cambridge University Press
,
New York
.
34.
Tu
,
L. W.
,
2011
,
An Introduction to Manifolds
, 2nd ed.,
Springer Science+ Business Media
,
New York
.
35.
Melrose
,
R. B.
,
1993
,
The Atiyah-Patodi-Singer Index Theorem, Research Notes in Mathematics
, Vol.
4
,
A K Peters
,
Wellesley, MA
.
36.
Geradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
37.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer Science+ Business Media
,
London
.
38.
Kevorkian
,
J.
, and
Cole
,
J. D.
,
1985
,
Perturbation Methods in Applied Mathematics
, 2nd ed.,
Springer-Verlag
,
New York
.
39.
Cousteix
,
J.
, and
Mauss
,
J.
,
2007
,
Asymptotic Analysis and Boundary Layers
,
Springer-Verlag
,
Berlin
.
40.
Kozlov
,
V. V.
, and
Treshchev
,
D. V.
,
1991
,
Billiards: A Genetic Introduction to the Dynamics of Systems With Impacts
(Translations of Mathematical Monographs, Vol.
89
), American Mathematical Society, Providence, RI.
41.
Zahariev
,
E.
,
2003
, “
Multibody System Contact Dynamics Simulation
,”
Virtual Nonlinear Multibody Systems
(NATO Science Series, Vol.
103
),
W.
Schiehlen
and
M.
Valasek
, eds.,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
383
402
.
42.
Νeimark
,
J. I.
, and
Fufaev
,
N. A.
,
1972
, “
Dynamics of Nonholonomic Systems
,”
Translations of Mathematical Monographs
, Vol.
33
,
American Mathematical Society
, Providence, RI.
43.
Papalukopoulos
,
C.
, and
Natsiavas
,
S.
,
2007
, “
Dynamics of Large Scale Mechanical Models Using Multi-Level Substructuring
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
40
51
.
44.
Theodosiou
,
C.
, and
Natsiavas
,
S.
,
2009
, “
Dynamics of Finite Element Structural Models With Multiple Unilateral Constraints
,”
Int. J. Non-Linear Mech.
,
44
(
4
), pp.
371
382
.
45.
Gonçalves
,
A. A.
,
Bernardino
,
A.
,
Jorge
,
J.
, and
Lopes
,
D. S.
,
2017
, “
A Benchmark Study on Accuracy-Controlled Distance Calculation Between Superellipsoid and Superovoid Contact Geometries
,”
Mech. Mach. Theory
,
115
, pp.
77
96
.
46.
Pournaras
,
A.
,
Karaoulanis
,
F.
, and
Natsiavas
,
S.
,
2017
, “
Dynamics of Mechanical Systems Involving Impact and Friction Using a New Contact Detection Algorithm
,”
Int. J. Non-Linear Mech.
,
94
, pp.
309
322
.
47.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
,
1996
, “
A Critical Study of the Applicability of Rigid-Body Collisions Theory
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
307
316
.
48.
Nguyen
,
N. S.
, and
Brogliato
,
B.
,
2014
,
Multiple Impacts in Dissipative Granular Chains
(Lecture Notes in Applied and Computational Mechanics, Vol.
72
),
Springer
,
Berlin
.
49.
Melrose
,
R. B.
,
1996
, “
Differential Analysis on Manifolds With Corners
,” accessed Oct. 30, 2018, http://math.mit.edu/~rbm
50.
Joyce
,
D.
,
2016
, “
A Generalization of Manifolds With Corners
,”
Adv. Math.
,
299
, pp.
760
862
.
51.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems
(Lecture Notes in Applied and Computational Mechanics, Vol.
35
),
Springer
,
Berlin
.
52.
Brüls
,
O.
,
Acary
,
V.
, and
Cardona
,
A.
,
2014
, “
Simultaneous Enforcement of Constraints at Position and Velocity Levels in the Nonsmooth Generalized-α Scheme
,”
Comput. Methods Appl. Eng.
,
281
, pp.
131
161
.
You do not currently have access to this content.