Abstract

Transient analysis of medium-frequency (mid-frequency) and high-frequency vibrations plays an important role in the research and development of complex structures in aerospace, automobile, civil, mechanical, and ship engineering. Low-frequency analysis tools, like the finite element methods, do not work well for mid- and high-frequency problems because they require a huge number of degrees-of-freedom and consequently costly computation, and are sensitive to material properties and boundary conditions. High-frequency analysis tools, such as the statistical energy analysis (SEA) and its variations, are unsuitable for midfrequency problems because they describe the vibrational behaviors of multibody structures in a global manner and cannot provide detailed local information about displacements and internal forces. In this paper, a new method, which is called the augmented distributed transfer function method (DTFM), is proposed for transient vibration analysis of two-dimensional beam structures at medium and high frequencies. Without the need for discretization and numerical integration, the augmented DTFM consistently delivers analytical transient solutions from low to high-frequency regions. A unique feature of the proposed method is that it can provide local information about system response, such as the displacements and internal forces of a structure, at any point and in any frequency region. Additionally, the proposed method provides a platform for model reduction, by which, a balance of efficiency and accuracy in mid- and high-frequency analyses can be achieved. The proposed method is demonstrated in numerical examples.

References

1.
Nefske
,
D. J.
,
Wolf
,
J. A.
, Jr.
, and
Howell
,
L. J.
,
1982
, “
Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment: A Review of Current Practice
,”
J. Sound Vib.
,
80
(
2
), pp.
247
266
.10.1016/0022-460X(82)90194-8
2.
Lyon
,
R. H.
, and
DeJong
,
R. G.
,
1995
,
Theory and Application of Statistical Energy Analysis
, 2nd ed.,
Butterworth-Heinemann
,
Newton, MA
.
3.
Rabbiolo
,
G.
,
Bernhard
,
R. J.
, and
Milner
,
F. A.
,
2004
, “
Definition of a High-Frequency Threshold for Plates and Acoustical Spaces
,”
J. Sound Vib.
,
277
(
4–5
), pp.
647
667
.10.1016/j.jsv.2003.09.015
4.
Vlahopoulos
,
N.
, and
Zhao
,
X.
,
1999
, “
Basic Development of Hybrid Finite Element Method for Midfrequency Structural Vibrations
,”
AIAA J.
,
37
(
11
), pp.
1495
1505
.10.2514/2.629
5.
Meirovitch
,
L.
,
1980
,
Computational Methods in Structural Dynamics
,
Springer Science & Business Media
,
New York
.
6.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2001
,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
Wiley
,
New York
.
7.
Von Flotow
,
A. H.
,
1986
, “
Disturbance Propagation in Structural Networks
,”
J. Sound Vib.
,
106
(
3
), pp.
433
450
.10.1016/0022-460X(86)90190-2
8.
Yong
,
Y.
, and
Lin
,
Y. K.
,
1992
, “
Dynamic Response Analysis of Truss-Type Structural Networks: A Wave Propagation Approach
,”
J. Sound Vib.
,
156
(
1
), pp.
27
45
.10.1016/0022-460X(92)90810-K
9.
Wohlever
,
J. C.
, and
Bernhard
,
R. J.
,
1992
, “
Mechanical Energy Flow Models of Rods and Beams
,”
J. Sound Vib.
,
153
(
1
), pp.
1
19
.10.1016/0022-460X(92)90623-6
10.
Cho
,
P. E.
, and
Bernhard
,
R. J.
,
1998
, “
Energy Flow Analysis of Coupled Beams
,”
J. Sound Vib.
,
211
(
4
), pp.
593
605
.10.1006/jsvi.1997.1350
11.
Mace
,
B. R.
,
Duhamel
,
D.
,
Brennan
,
M. J.
, and
Hinke
,
L.
,
2005
, “
Finite Element Prediction of Wave Motion in Structural Waveguides
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2835
2843
.10.1121/1.1887126
12.
Duhamel
,
D.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2006
, “
Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures
,”
J. Sound Vib.
,
294
(
1–2
), pp.
205
220
.10.1016/j.jsv.2005.11.014
13.
Ladevèze
,
P.
, and
Chevreuil
,
M.
,
2005
, “
A New Computational Method for Transient Dynamics Including the Low- and the Medium-Frequency Ranges
,”
Int. J. Numer. Methods Eng.
,
64
(
4
), pp.
503
527
.10.1002/nme.1379
14.
Renno
,
J. M.
, and
Mace
,
B. R.
,
2013
, “
Calculation of Reflection and Transmission Coefficients of Joints Using a Hybrid Finite Element/Wave and Finite Element Approach
,”
J. Sound Vib
,.,
332
(
9
), pp.
2149
2164
.10.1016/j.jsv.2012.04.029
15.
Pinnington
,
R. J.
, and
Lednik
,
D.
,
1996
, “
Transient Energy Flow Between Two Coupled Beams
,”
J. Sound Vib.
,
189
(
2
), pp.
265
287
.10.1006/jsvi.1996.0019
16.
Langley
,
R. S.
,
Hawes
,
D. H.
,
Butlin
,
T.
, and
Ishii
,
Y.
,
2019
, “
A Derivation of the Transient Statistical Energy Analysis (TSEA) Equations With Benchmark Applications to Plate Systems
,”
J. Sound Vib.
,
445
, pp.
88
102
.10.1016/j.jsv.2019.01.002
17.
Howard
,
S. M.
, and
Pao
,
Y.-H.
,
1998
, “
Analysis and Experiments on Stress Waves in Planar Trusses
,”
J. Eng. Mech.
,
124
(
8
), pp.
884
891
.10.1061/(ASCE)0733-9399(1998)124:8(884)
18.
Pao
,
Y.-H.
,
Keh
,
D.-C.
, and
Howard
,
S. M.
,
1999
, “
Dynamic Response and Wave Propagation in Plane Trusses and Frames
,”
AIAA J.
,
37
(
5
), pp.
594
603
.10.2514/2.778
19.
Guo
,
Y. Q.
,
Chen
,
W. Q.
, and
Pao
,
Y.-H.
,
2008
, “
Dynamic Analysis of Space Frames: The Method of Reverberation-Ray Matrix and the Orthogonality of Normal Modes
,”
J. Sound Vib.
,
317
(
3–5
), pp.
716
738
.10.1016/j.jsv.2008.03.052
20.
Le Guennec
,
Y.
, and
Savin
,
É.
,
2011
, “
A Transport Model and Numerical Simulation of the High-Frequency Dynamics of Three-Dimensional Beam Trusses
,”
J. Acoust. Soc. Am.
,
130
(
6
), pp.
3706
3722
.10.1121/1.3651819
21.
Ma
,
X.
, and
Vakakis
,
A. F.
,
1999
, “
Karhunen-Loève Decomposition of the Transient Dynamics of a Multibay Truss
,”
AIAA J.
,
37
(
8
), pp.
939
946
.10.2514/2.814
22.
Zhang
,
Y.
, and
Yang
,
B.
,
2019
, “
Transient Vibrations of Two-Dimensional Beam Frames at Mid- and High-Frequencies
,”
ASME
Paper No. DETC2019-97331
. 10.1115/DETC2019-97331
23.
Yang
,
B.
, and
Tan
,
C. A.
,
1992
, “
Transfer Functions of One-Dimensional Distributed Parameter Systems
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
1009
1014
.10.1115/1.2894015
24.
Yang
,
B.
,
1994
, “
Distributed Transfer Function Analysis of Complex Distributed Parameter Systems
,”
ASME J. Appl. Mech.
,
61
(
1
), pp.
84
92
.10.1115/1.2901426
25.
Yang
,
B.
,
2010
, “
Exact Transient Vibration of Stepped Bars, Shafts and Strings Carrying Lumped Masses
,”
J. Sound Vib.
,
329
(
8
), pp.
1191
1207
.10.1016/j.jsv.2009.10.035
26.
Noh
,
K.
, and
Yang
,
B.
,
2014
, “
An Augmented State Formulation for Modeling and Analysis of Multibody Distributed Dynamic Systems
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051011
.10.1115/1.4026124
27.
Yang
,
B.
, and
Zhang
,
Y.
,
2019
, “
A New Method for Mid- to High-Frequency Vibration Analyses of Beam Structures
,”
SAE Technical Paper No. 2019-01-1535
. 10.4271/2019-01-1535
28.
Doyle
,
J. F.
, and
Kamle
,
S.
,
1985
, “
An Experimental Study of the Reflection and Transmission of Flexural Waves at Discontinuities
,”
ASME J. Appl. Mech.
,
52
(
3
), pp.
669
673
.10.1115/1.3169119
29.
Mei
,
C.
, and
Mace
,
B. R.
,
2005
, “
Wave Reflection and Transmission in Timoshenko Beams and Wave Analysis of Timoshenko Beam Structures
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
382
394
.10.1115/1.1924647
30.
Morse
,
P. M.
, and
Feshbach
,
H.
,
1953
,
Methods of Theoretical Physics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.