Abstract

Robotic leg prostheses and exoskeletons have traditionally been designed using highly-geared motor-transmission systems that minimally exploit the passive dynamics of human locomotion, resulting in inefficient actuators that require significant energy consumption and thus provide limited battery-powered operation or require large onboard batteries. Here we review two of the leading energy-efficient actuator design principles for legged and wearable robotic systems: series elasticity and backdrivability. As shown by inverse dynamic simulations of walking, there are periods of negative joint mechanical work that can be used to increase efficiency by recycling some of the otherwise dissipated energy using series elastic actuators and/or backdriveable actuators with energy regeneration. Series elastic actuators can improve shock tolerance during foot-ground impacts and reduce the peak power and energy consumption of the electric motor via mechanical energy storage and return. However, actuators with series elasticity tend to have lower output torque, increased mass and architecture complexity due to the added physical spring, and limited force and torque control bandwidth. High torque density motors with low-ratio transmissions, known as quasi-direct drives, can likewise achieve low output impedance and high backdrivability, allowing for safe and compliant human-robot physical interactions, in addition to energy regeneration. However, torque-dense motors tend to have higher Joule heating losses, greater motor mass and inertia, and require specialized motor drivers for real-time control. While each actuator design has advantages and drawbacks, designers should consider the energy-efficiency of robotic leg prostheses and exoskeletons during daily locomotor activities besides continuous level-ground walking.

References

1.
Voloshina
,
A. S.
, and
Collins
,
S. H.
,
2020
, “
Lower Limb Active Prosthetic Systems–Overview
,”
Wearable Robotics: Systems and Applications
, pp.
469
486
.10.1016/B978-0-12-814659-0.00023-0
2.
Pieringer
,
D. S.
,
Grimmer
,
M.
,
Russold
,
M. F.
, and
Riener
,
R.
,
2017
, “
Review of the Actuators of Active Knee Prostheses and Their Target Design Outputs for Activities of Daily Living
,” 2017 International Conference on Rehabilitation Robotics (
ICORR
),
London
, July 17–20, pp.
1246
1253
.10.1109/ICORR.2017.8009420
3.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Robot.
,
24
(
1
), pp.
144
158
.10.1109/TRO.2008.915453
4.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.10.1109/TNSRE.2016.2521160
5.
Kazerooni
,
H.
, and
Steger
,
R.
,
2006
, “
The Berkeley Lower Extremity Exoskeleton
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
14
25
.10.1115/1.2168164
6.
Zoss
,
A.
, and
Kazerooni
,
H.
,
2005
, “
Architecture and Hydraulics of a Lower Extremity Exoskeleton
,”
ASME Paper No.
IMECE2005-80129. 10.1115/IMECE2005-80129
7.
Flowers
,
W. C.
, and
Mann
,
R. W.
,
1977
, “
An Electrohydraulic Knee-Torque Controller for a Prosthesis Simulator
,”
ASME J. Biomech. Eng.
,
99
(
1
), pp.
3
8
.10.1115/1.3426266
8.
Hollerbach
,
J.
,
Hunter
,
I.
, and
Ballantyne
,
J.
,
1992
, “
A Comparative Analysis of Actuator Technologies for Robotics
,”
Rob. Rev.
,
2
, pp.
299
342
.https://dl.acm.org/doi/abs/10.5555/146312.146323
9.
García
,
P. L.
,
Crispel
,
S.
,
Saerens
,
E.
,
Verstraten
,
V.
, and
Lefeber
,
D.
,
2020
, “
Compact Gearboxes for Modern Robotics: A Review
,”
Front. Robot. AI
,
7
, p.
103
.10.3389/frobt.2020.00103
10.
Laschowski
,
B.
, and
Andrysek
,
J.
,
2018
, “
Electromechanical Design of Robotic Transfemoral Prostheses
,”
ASME
Paper No. DETC2018-85234. 10.1115/DETC2018-85234
11.
Kashiri
,
N.
,
Abate
,
A.
,
Abram
,
S. J.
,
Albu-Schaffer
,
A.
,
Clary
,
P. J.
,
Daley
,
M.
,
Faraji
,
S.
,
Furnemont
,
R.
, et al.,
2018
, “
An Overview on Principles for Energy Efficient Robot Locomotion
,”
Front. Robot. AI
,
5
, p.
129
.10.3389/frobt.2018.00129
12.
Farina
,
D.
,
Vujaklija
,
I.
,
Brånemark
,
R.
,
Bull
,
A. M. J.
,
Dietl
,
H.
,
Graimann
,
B.
,
Hargrove
,
L. J.
, et al.,
2021
, “
Toward Higher-Performance Bionic Limbs for Wider Clinical Use
,”
Nat. Biomed. Eng.
, epub.10.1038/s41551-021-00732-x
13.
Maryniak
,
A.
,
Laschowski
,
B.
, and
Andrysek
,
J.
,
2018
, “
Technical Overview of Osseointegrated Transfemoral Prostheses: Orthopedic Surgery and Implant Design Centered
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
2
), p.
020801
.10.1115/1.4039105
14.
Lopez Garcia
,
P.
,
Saerens
,
E.
,
Crispel
,
S.
,
Varadharajan
,
A.
,
Lefeber
,
D.
, and
Verstraten
,
T.
,
2022
, “
Factors Influencing Actuator's Backdrivability in Human-Centered Robotics
,”
MATEC Web Conference
, Varna, Bulgaria, Sept. 5–8, Vol.
366
, p.
01002
.10.1051/matecconf/202236601002
15.
Laschowski
,
B.
,
McPhee
,
J.
, and
Andrysek
,
J.
,
2019
, “
Lower-Limb Prostheses and Exoskeletons With Energy Regeneration: Mechatronic Design and Optimization Review
,”
ASME J. Mech. Robot.
,
11
(
4
), p.
040801
.10.1115/1.4043460
16.
Verstraten
,
T.
,
Beckerle
,
P.
,
Furnémont
,
R.
,
Mathijssen
,
G.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2016
, “
Series and Parallel Elastic Actuation: Impact of Natural Dynamics on Power and Energy Consumption
,”
Mech. Mach. Theory
,
102
, pp.
232
246
.10.1016/j.mechmachtheory.2016.04.004
17.
Verstraten
,
T.
,
Geeroms
,
J.
,
Mathijssen
,
G.
,
Convens
,
B.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
Optimizing the Power and Energy Consumption of Powered Prosthetic Ankles With Series and Parallel Elasticity
,”
Mech. Mach. Theory
,
116
, pp.
419
432
.10.1016/j.mechmachtheory.2017.06.004
18.
Verstraten
,
T.
,
Flynn
,
L.
,
Geeroms
,
J.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
On the Electrical Energy Consumption of Active Ankle Prostheses With Series and Parallel Elastic Elements
,” 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (
Biorob
),
Enschede
, Aug. 26–29, pp.
720
725
.10.1109/BIOROB.2018.8487656
19.
Winter
,
D. A.
,
1991
, The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed.,
Waterloo Biomechanics
,
Waterloo, Canada
.
20.
Winter
,
D. A.
,
1983
, “
Energy Generation and Absorption at the Ankle and Knee During Fast, Natural, and Slow Cadences
,”
Clin. Orthop.
,
175
, pp.
147
154
.https://pubmed.ncbi.nlm.nih.gov/6839580/
21.
Winter
,
D. A.
,
2009
, Biomechanics and Motor Control of Human Movement, 4th ed,
Wiley
,
Hoboken, NJ
.
22.
Donelan
,
J. M.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2002
, “
Mechanical Work for Step-to-Step Transitions is a Major Determinant of the Metabolic Cost of Human Walking
,”
J. Exp. Biol.
,
205
(
23
), pp.
3717
3727
.10.1242/jeb.205.23.3717
23.
Donelan
,
J. M.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2002
, “
Simultaneous Positive and Negative External Mechanical Work in Human Walking
,”
J. Biomech.
,
35
(
1
), pp.
117
124
.10.1016/S0021-9290(01)00169-5
24.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
,
2005
, “
Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions
,”
Exerc. Sport Sci. Rev.
,
33
(
2
), pp.
88
97
.10.1097/00003677-200504000-00006
25.
Sasaki
,
K.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2009
, “
The Relationships Between Muscle, External, Internal and Joint Mechanical Work During Normal Walking
,”
J. Exp. Biol.
,
212
(
5
), pp.
738
744
.10.1242/jeb.023267
26.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2012
, “
The Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective
,”
J. R. Soc. Interface
,
9
(
66
), pp.
110
118
.10.1098/rsif.2011.0182
27.
Nuckols
,
R. W.
,
Takahashi
,
K. Z.
,
Farris
,
D. J.
,
Mizrachi
,
S.
,
Riemer
,
R.
, and
Sawicki
,
G. S.
,
2020
, “
Mechanics of Walking and Running Up and Downhill: A Joint-Level Perspective to Guide Design of Lower-Limb Exoskeletons
,”
PloS One
,
15
(
8
), p.
e0231996
.10.1371/journal.pone.0231996
28.
Reznick
,
E.
,
Embry
,
K. R.
,
Neuman
,
R.
,
Bolívar-Nieto
,
E.
,
Fey
,
N. P.
, and
Gregg
,
R. D.
,
2021
, “
Lower-Limb Kinematics and Kinetics During Continuously Varying Human Locomotion
,”
Sci. Data
,
8
(
1
), p.
282
.10.1038/s41597-021-01057-9
29.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
, Aug. 5–9, Vol.
1
, pp.
399
406
.
30.
Krimsky
,
E.
, and
Collins
,
S. H.
,
2020
, “
Optimal Control of an Energy-Recycling Actuator for Mobile Robotics Applications
,” 2020 IEEE International Conference on Robotics and Automation (
ICRA
),
Paris, France
, May 31–Aug. 31, pp.
3559
3565
.10.1109/IROS.1995.525827
31.
Bolivar
,
E.
,
Rezazadeh
,
S.
,
Summers
,
T.
, and
Gregg
,
R. D.
,
2019
, “
Robust Optimal Design of Energy Efficient Series Elastic Actuators: Application to a Powered Prosthetic Ankle
,” 2019 IEEE 16th International Conference on Rehabilitation Robotics (
ICORR
),
Toronto, ON, Canada
, June 24–28, pp.
740
747
.10.1109/ICORR.2019.8779446
32.
Bolivar Nieto
,
E. A.
,
Rezazadeh
,
S.
, and
Gregg
,
R. D.
,
2019
, “
Minimizing Energy Consumption and Peak Power of Series Elastic Actuators: A Convex Optimization Framework for Elastic Element Design
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
1334
1345
.10.1109/TMECH.2019.2906887
33.
Bolívar-Nieto
,
E. A.
,
Thomas
,
G. C.
,
Rouse
,
E.
, and
Gregg
,
R. D.
,
2021
, “
Convex Optimization for Spring Design in Series Elastic Actuators: From Theory to Practice
,” International Conference on Intelligent Robots and Systems (
IROS
),
Prague, Czech Republic
, Sept. 27–Oct. 1, p.
6
.10.1109/IROS51168.2021.9636427
34.
Bolívar
,
E.
,
Rezazadeh
,
S.
, and
Gregg
,
R.
,
2017
, “
A General Framework for Minimizing Energy Consumption of Series Elastic Actuators With Regeneration
,”
ASME
Paper No. DSCC2017-5373. 10.1115/DSCC2017-5373
35.
Rouse
,
E. J.
,
Mooney
,
L. M.
, and
Hargrove
,
L. J.
,
2016
, “
The Design of a Lightweight, Low Cost Robotic Knee Prosthesis With Selectable Series Elasticity
,” 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (
BioRob
),
Singapore,
June 26–29, pp.
1055
1055
.10.1109/BIOROB.2016.7523770
36.
Kang
,
I.
,
Peterson
,
R. R.
,
Herrin
,
K. R.
,
Mazumdar
,
A.
, and
Young
,
A. J.
,
2023
, “
Design and Validation of a Torque-Controllable Series Elastic Actuator-Based Hip Exoskeleton for Dynamic Locomotion
,”
ASME J. Mech. Robot.
,
15
(
2
), p.
13
.10.1115/1.4054724
37.
Vantilt
,
J.
,
Tanghe
,
K.
,
Afschrift
,
M.
,
Bruijnes
,
A. K.
,
Junius
,
K.
,
Geeroms
,
J.
,
Aertbeliën
,
E.
,
De Groote
,
F.
,
Lefeber
,
D.
,
Jonkers
,
I.
, and
De Schutter
,
J.
,
2019
, “
Model-Based Control for Exoskeletons With Series Elastic Actuators Evaluated on Sit-to-Stand Movements
,”
J. NeuroEng. Rehabil.
,
16
(
1
), p.
65
.10.1186/s12984-019-0526-8
38.
Zhang
,
T.
, and
Huang
,
H.
,
2019
, “
Design and Control of a Series Elastic Actuator With Clutch for Hip Exoskeleton for Precise Assistive Magnitude and Timing Control and Improved Mechanical Safety
,”
IEEE/ASME Trans. Mechatron.
,
24
(
5
), pp.
2215
2226
.10.1109/TMECH.2019.2932312
39.
Dong
,
D.
,
Ge
,
W.
,
Convens
,
B.
,
Sun
,
Y.
,
Verstraten
,
T.
, and
Vanderborght
,
B.
,
2020
, “
Design, Optimization and Energetic Evaluation of an Efficient Fully Powered Ankle-Foot Prosthesis With a Series Elastic Actuator
,”
IEEE Access
,
8
, pp.
61491
61503
.10.1109/ACCESS.2020.2983518
40.
Convens
,
B.
,
Dong
,
D.
,
Furnemont
,
R.
,
Verstraten
,
T.
,
Cherelle
,
P.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2019
, “
Modeling, Design and Test-Bench Validation of a Semi-Active Propulsive Ankle Prosthesis With a Clutched Series Elastic Actuator
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1823
1830
.10.1109/LRA.2019.2897993
41.
Rouse
,
E. J.
,
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2014
, “
Clutchable Series-Elastic Actuator: Implications for Prosthetic Knee Design
,”
Int. J. Robot. Res.
,
33
(
13
), pp.
1611
1625
.10.1177/0278364914545673
42.
Martinez-Villalpando
,
E. C.
, and
Herr
,
H.
,
2009
, “
Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehabil. Res. Dev.
,
46
(
3
), pp.
361
374
.10.1682/JRRD.2008.09.0131
43.
Martinez-Villalpando
,
E. C.
,
Mooney
,
L.
,
Elliott
,
G.
, and
Herr
,
H.
,
2011
, “
Antagonistic Active Knee Prosthesis. A Metabolic Cost of Walking Comparison With a Variable-Damping Prosthetic Knee
,”
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
, Aug. 30–Sept. 3, pp.
8519
8522
.10.1109/IEMBS.2011.6092102
44.
Mooney
,
L.
, and
Herr
,
H.
,
2013
, “
Continuously-Variable Series-Elastic Actuator
,” 2013 IEEE 13th International Conference on Rehabilitation Robotics (
ICORR
),
Seattle, WA
, June 24–26, pp.
1
6
10.1109/ICORR.2013.6650402.
45.
Carney
,
M. E.
,
Shu
,
T.
,
Stolyarov
,
R.
,
Duval
,
J. F.
, and
Herr
,
H. M.
,
2021
, “
Design and Preliminary Results of a Reaction Force Series Elastic Actuator for Bionic Knee and Ankle Prostheses
,”
IEEE Trans. Med. Robot. Bionics
,
3
(
3
), pp.
542
553
.10.1109/TMRB.2021.3098921
46.
Rouse
,
E. J.
,
Mooney
,
L. M.
,
Martinez-Villalpando
,
E. C.
, and
Herr
,
H. M.
,
2013
, “
Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption
,” 2013 IEEE 13th International Conference on Rehabilitation Robotics (
ICORR
),
Seattle, WA
, June 24–26, pp.
1
6
.10.1109/ICORR.2013.6650383
47.
Martinez- Villalpando
,
E. C.
,
Weber
,
J.
,
Elliott
,
G.
, and
Herr
,
H.
,
2008
, “
Design of an Agonist-Antagonist Active Knee Prosthesis
,”
2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
, Oct. 19–22, pp.
529
534
.10.1109/BIOROB.2008.4762919
48.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Hyun
,
D. J.
,
Lee
,
J.
,
Otten
,
D. M.
,
Lang
,
J. H.
, and
Kim
,
S.
,
2015
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1117
1129
.10.1109/TMECH.2014.2339013
49.
Sensinger
,
J. W.
,
Clark
,
S. D.
, and
Schorsch
,
J. F.
,
2011
, “
Exterior vs. Interior Rotors in Robotic Brushless Motors
,” 2011 IEEE International Conference on Robotics and Automation (
ICRA
),
Shanghai, China
, May 9–13, pp.
2764
2770
.10.1109/ICRA.2011.5979940
50.
Seth
,
B.
, and
Flowers
,
W. C.
,
1990
, “
Generalized Actuator Concept for the Study of the Efficiency of Energetic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
233
238
.10.1115/1.2896130
51.
Vailati
,
L. G.
, and
Goldfarb
,
M.
,
2022
, “
On Using a Brushless Motor as a Passive Torque-Controllable Brake
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
9
), p.
091001
.10.1115/1.4054733
52.
Wang
,
A.
, and
Kim
,
S.
,
2015
, “
Directional Efficiency in Geared Transmissions: Characterization of Backdrivability Towards Improved Proprioceptive Control
,” 2015 IEEE International Conference on Robotics and Automation (
ICRA
),
Seattle, WA
, May 26–30, pp.
1055
1062
.10.1109/ICRA.2015.7139307
53.
Seok
,
S.
,
Wang
,
A.
,
Otten
,
D.
, and
Kim
,
S.
,
2012
, “
Actuator Design for High Force Proprioceptive Control in Fast Legged Locomotion
,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS 2012
),
Vilamoura-Algarve, Portugal
, Oct. 7–12, pp.
1970
1975
.10.1109/IROS.2012.6386252
54.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2013
, “
Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot
,” 2013 IEEE International Conference on Robotics and Automation (
ICRA
),
Karlsruhe, Germany
, May 6–10, pp.
3307
3312
.10.1109/ICRA.2013.6631038
55.
Wensing
,
P. M.
,
Wang
,
A.
,
Seok
,
S.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2017
, “
Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots
,”
IEEE Trans. Robot.
,
33
(
3
), pp.
509
522
.10.1109/TRO.2016.2640183
56.
Urs
,
K.
,
Adu
,
C. E.
,
Rouse
,
E. J.
, and
Moore
,
T. Y.
,
2022
, “
Design and Characterization of 3D Printed, Open-Source Actuators for Legged Locomotion
,” 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Kyoto, Japan
, Oct. 23–27, pp. 1957–1964.10.1109/IROS47612.2022.9981940
57.
Zhu
,
H.
,
Doan
,
J.
,
Stence
,
C.
,
Lv
,
G.
,
Elery
,
T.
, and
Gregg
,
R.
,
2017
, “
Design and Validation of a Torque Dense, Highly Backdrivable Powered Knee-Ankle Orthosis
,” 2017 IEEE International Conference on Robotics and Automation (
ICRA
),
Singapore,
May 29–June 3, pp.
504
510
.10.1109/ICRA.2017.7989063
58.
Zhu
,
H.
,
Nesler
,
C.
,
Divekar
,
N.
,
Peddinti
,
V.
, and
Gregg
,
R.
,
2021
, “
Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
3104
3115
.10.1109/TMECH.2021.3053226
59.
Zhu
,
H.
,
Nesler
,
C.
,
Divekar
,
N.
,
Ahmad
,
M. T.
, and
Gregg
,
R. D.
,
2019
, “
Design and Validation of a Partial-Assist Knee Orthosis With Compact, Backdrivable Actuation
,” 2019 IEEE 16th International Conference on Rehabilitation Robotics (
ICORR
),
Toronto, ON, Canada
, June 24–28, pp.
917
924
.10.1109/ICORR.2019.8779479
60.
Lv
,
G.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work
,”
IEEE Control Syst.
,
38
(
6
), pp.
88
113
.10.1109/MCS.2018.2866605
61.
Elery
,
T.
,
Rezazadeh
,
S.
,
Nesler
,
C.
, and
Gregg
,
R. D.
,
2020
, “
Design and Validation of a Powered Knee–Ankle Prosthesis With High-Torque, Low-Impedance Actuators
,”
IEEE Trans. Robot.
,
36
(
6
), pp.
1649
1668
.10.1109/TRO.2020.3005533
62.
Elery
,
T.
,
Rezazadeh
,
S.
,
Nesler
,
C.
,
Doan
,
J.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators
,” 2018 IEEE International Conference on Robotics and Automation (
ICRA
),
Brisbane, QLD
, May 21–25, pp.
2788
2795
.10.1109/ICRA.2018.8461259
63.
Nesler
,
C.
,
Thomas
,
G.
,
Divekar
,
N.
,
Rouse
,
E. J.
, and
Gregg
,
R. D.
,
2022
, “
Enhancing Voluntary Motion With Modular, Backdrivable, Powered Hip and Knee Orthoses
,”
IEEE Robot. Autom. Lett.
,
7
(
3
), pp.
6155
6162
.10.1109/LRA.2022.3145580
64.
Huang
,
T.-H.
,
Zhang
,
S.
,
Yu
,
S.
,
MacLean
,
M. K.
,
Zhu
,
J.
,
Di Lallo
,
A.
,
Jiao
,
C.
,
Bulea
,
T. C.
,
Zheng
,
M.
, and
Su
,
H.
,
2022
, “
Modeling and Stiffness-Based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance
,”
IEEE Trans. Robot.
,
38
(
3
), pp.
1442
1459
.10.1109/TRO.2022.3170287
65.
Wang
,
J.
,
Li
,
X.
,
Huang
,
T.-H.
,
Yu
,
S.
,
Li
,
Y.
,
Chen
,
T.
,
Carriero
,
A.
,
Oh-Park
,
M.
, and
Su
,
H.
,
2018
, “
Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
4265
4272
.10.1109/LRA.2018.2864352
66.
Yu
,
S.
,
Huang
,
T.-H.
,
Wang
,
D.
,
Lynn
,
B.
,
Sayd
,
D.
,
Silivanov
,
V.
,
Park
,
Y. S.
,
Tian
,
Y.
, and
Su
,
H.
,
2019
, “
Design and Control of a High-Torque and Highly Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention During Squatting
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
4579
4586
.10.1109/LRA.2019.2931427
67.
Yu
,
S.
,
Huang
,
T.-H.
,
Yang
,
X.
,
Jiao
,
C.
,
Yang
,
J.
,
Chen
,
Y.
,
Yi
,
J.
, and
Su
,
H.
,
2020
, “
Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton With High Backdrivability and High Bandwidth
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
1794
1802
.10.1109/TMECH.2020.2995134
68.
Zhu
,
J.
,
Jiao
,
C.
,
Dominguez
,
I.
,
Yu
,
S.
, and
Su
,
H.
,
2022
, “
Design and Backdrivability Modeling of a Portable High Torque Robotic Knee Prosthesis With Intrinsic Compliance for Agile Activities
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
1837
1845
.10.1109/TMECH.2022.3176255
69.
Bartlett
,
H. L.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2017
, “
Optimal Transmission Ratio Selection for Electric Motor Driven Actuators With Known Output Torque and Motion Trajectories
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
10
), p.
101013
.10.1115/1.4036538
70.
Rezazadeh
,
S.
, and
Hurst
,
J. W.
,
2014
, “
On the Optimal Selection of Motors and Transmissions for Electromechanical and Robotic Systems
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago
, IL, Sept. 14–18, pp.
4605
4611
.10.1109/IROS.2014.6943215
71.
Donelan
,
J. M.
,
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
, and
Kuo
,
A. D.
,
2008
, “
Biomechanical Energy Harvesting: Generating Electricity During Walking With Minimal User Effort
,”
Science
,
319
(
5864
), pp.
807
810
.10.1126/science.1149860
72.
Donelan
,
J. M.
,
Naing
,
V.
, and
Li
,
Q.
,
2009
, “
Biomechanical Energy Harvesting
,”
2009 IEEE Radio and Wireless Symposium
,
San Diego, CA
, Jan. 18–22, p.
4
.10.1109/RWS.2009.4957269
73.
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
,
Kuo
,
A. D.
, and
Donelan
,
J. M.
,
2008
, “
Biomechanical Energy Harvesting: Apparatus and Method
,” 2008 IEEE International Conference on Robotics and Automation (
ICRA
),
Pasadena, CA
, May 19–23, pp.
3672
3677
.10.1109/ROBOT.2008.4543774
74.
Li
,
Q.
,
Naing
,
V.
, and
Donelan
,
J. M.
,
2009
, “
Development of a Biomechanical Energy Harvester
,”
J. NeuroEng. Rehabil.
,
6
(
1
), p.
22
.10.1186/1743-0003-6-22
75.
Selinger
,
J. C.
, and
Donelan
,
J. M.
,
2016
, “
Myoelectric Control for Adaptable Biomechanical Energy Harvesting
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
3
), pp.
364
373
.10.1109/TNSRE.2015.2510546
76.
Barto
,
T.
, and
Simon
,
D.
,
2017
, “
Neural Network Control of an Optimized Regenerative Motor Drive for a Lower-Limb Prosthesis
,”
2017 American Control Conference (ACC)
,
Seattle, WA
, May 24–26, pp.
5330
5335
.10.23919/ACC.2017.7963783
77.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2018
, “
Control With Optimal Energy Regeneration in Robot Manipulators Driven by Brushless DC Motors
,”
ASME
Paper No. DSCC2018-8972. 10.1115/DSCC2018-8972
78.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2020
, “
Energy-Optimal, Direct-Phase Control of Brushless Motors for Robotic Drives
,”
ASME
Paper No. DSCC2020-3200. 10.1115/DSCC2020-3200
79.
Rarick
,
R.
,
Richter
,
H.
,
van den Bogert
,
A.
,
Simon
,
D.
,
Warner
,
H.
, and
Barto
,
T.
,
2014
, “
Optimal Design of a Transfemoral Prosthesis With Energy Storage and Regeneration
,” 2014 American Control Conference (
ACC
),
Portland, OR
, June 4–6, pp.
4108
4113
.10.1109/ACC.2014.6859051
80.
Khalaf
,
P.
, and
Richter
,
H.
,
2016
, “
Parametric Optimization of Stored Energy in Robots With Regenerative Drive Systems
,” 2016 IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
),
Banff, AB, Canada
, July 12-15, pp.
1424
1429
.10.1109/AIM.2016.7576970
81.
Richter
,
H.
,
2015
, “
A Framework for Control of Robots With Energy Regeneration
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p.
091004
.10.1115/1.4030391
82.
dos Santos
,
E. G.
, and
Richter
,
H.
,
2018
, “
Modeling and Control of a Novel Variable-Stiffness Regenerative Actuator
,”
ASME
Paper No. DSCC2018-9054.10.1115/DSCC2018-9054
83.
Khademi
,
G.
,
Richter
,
H.
, and
Simon
,
D.
,
2016
, “
Multi-Objective Optimization of Tracking/Impedance Control for a Prosthetic Leg With Energy Regeneration
,” 2016 IEEE 55th Conference on Decision and Control (
CDC
),
Las Vegas, NV
, Dec. 12–14, pp.
5322
5327
.10.1109/CDC.2016.7799085
84.
Warner
,
H.
,
Simon
,
D.
, and
Richter
,
H.
,
2016
, “
Design Optimization and Control of a Crank-Slider Actuator for a Lower-Limb Prosthesis With Energy Regeneration
,” 2016 IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
),
Banff, AB, Canada
, July 12–15, pp.
1430
1435
.10.1109/AIM.2016.7576971
85.
Kim
,
B. H.
, and
Richter
,
H.
,
2018
, “
Energy Regeneration-Based Hybrid Control for Transfemoral Prosthetic Legs Using Four-Bar Mechanism
,”
IECON 2018–44th Annual Conference of the IEEE Industrial Electronics Society
,
Washington, DC
, Oct. 21–23, pp.
2516
2521
.10.1109/IECON.2018.8591399
86.
Khademi
,
G.
,
Mohammadi
,
H.
,
Richter
,
H.
, and
Simon
,
D.
,
2018
, “
Optimal Mixed Tracking/Impedance Control With Application to Transfemoral Prostheses With Energy Regeneration
,”
IEEE Trans. Biomed. Eng.
,
65
(
4
), pp.
894
910
.10.1109/TBME.2017.2725740
87.
Rohani
,
F.
,
Richter
,
H.
, and
van den Bogert
,
A. J.
,
2017
, “
Optimal Design and Control of an Electromechanical Transfemoral Prosthesis With Energy Regeneration
,”
PloS One
,
12
(
11
), p.
e0188266
.10.1371/journal.pone.0188266
88.
Khalaf
,
P.
, and
Richter
,
H.
,
2018
, “
On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
3
), p.
031003
.10.1115/1.4037653
89.
Khalaf
,
P.
,
Warner
,
H.
,
Hardin
,
E.
,
Richter
,
H.
, and
Simon
,
D.
,
2018
, “
Development and Experimental Validation of an Energy Regenerative Prosthetic Knee Controller and Prototype
,”
ASME
Paper No. DSCC2018-9091.10.1115/DSCC2018-9091
90.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2022
, “
A Novel Concept for Energy-Optimal, Independent-Phase Control of Brushless Motor Drivers
,”
ASME Lett. Dyn. Syst. Control
,
2
(
2
), pp.
1
11
.
91.
Burke
,
A. F.
,
2007
, “
Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles
,”
Proc. IEEE
,
95
(
4
), pp.
806
820
.10.1109/JPROC.2007.892490
92.
Hunter
,
B.
,
1981
, “
Design of a Self-Contained, Active, Regenerative Computer Controlled Above-Knee Prosthesis
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
93.
Seth
,
B.
,
1987
, “
Energy Regeneration and Its Application to Active Above-Knee Prostheses
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
94.
Tabor
,
K.
,
1988
, “
The Real-Time Digital Control of a Regenerative Above-Knee Prosthesis
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
95.
Andrysek
,
J.
, and
Chau
,
G.
,
2007
, “
An Electromechanical Swing-Phase-Controlled Prosthetic Knee Joint for Conversion of Physiological Energy to Electrical Energy: Feasibility Study
,”
IEEE Trans. Biomed. Eng.
,
54
(
12
), pp.
2276
2283
.10.1109/TBME.2007.908309
96.
Andrysek
,
J.
,
Liang
,
T.
, and
Steinnagel
,
B.
,
2009
, “
Evaluation of a Prosthetic Swing-Phase Controller With Electrical Power Generation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
4
), pp.
390
396
.10.1109/TNSRE.2009.2023292
97.
Tucker
,
M. R.
, and
Fite
,
K. B.
,
2010
, “
Mechanical Damping With Electrical Regeneration for a Powered Transfemoral Prosthesis
,” 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
),
Montreal, QC, Canada
, July 6–9, pp.
13
18
.10.1109/AIM.2010.5695828
98.
Riemer
,
R.
,
Nuckols
,
R. W.
, and
Sawicki
,
G. S.
,
2021
, “
Extracting Electricity With Exosuit Braking
,”
Science
,
372
(
6545
), pp.
909
911
.10.1126/science.abh4007
99.
Schertzer
,
E.
, and
Riemer
,
R.
,
2015
, “
Harvesting Biomechanical Energy or Carrying Batteries? An Evaluation Method Based on a Comparison of Metabolic Power
,”
J. NeuroEng. Rehabil.
,
12
(
1
), p.
30
.10.1186/s12984-015-0023-7
100.
Riemer
,
R.
, and
Shapiro
,
A.
,
2011
, “
Biomechanical Energy Harvesting From Human Motion: Theory, State of the Art, Design Guidelines, and Future Directions
,”
J. NeuroEng. Rehabil.
,
8
(
1
), p.
22
.10.1186/1743-0003-8-22
101.
Orendurff
,
M. S.
,
Schoen
,
J.
,
Bernatz
,
G.
,
Segal
,
A.
, and
Klute
,
G.
,
2008
, “
How Humans Walk: Bout Duration, Steps per Bout, and Rest Duration
,”
J. Rehabil. Res. Dev.
,
45
(
7
), pp.
1077
1090
.10.1682/JRRD.2007.11.0197
102.
Laschowski
,
B.
,
McNally
,
W.
,
Wong
,
A.
, and
McPhee
,
J.
,
2020
, “
ExoNet Database: Wearable Camera Images of Human Locomotion Environments
,”
Front. Robot. AI
,
7
, p.
562061
.10.3389/frobt.2020.562061
103.
Laschowski
,
B.
,
McNally
,
W.
,
Wong
,
A.
, and
McPhee
,
J.
,
2022
, “
Environment Classification for Robotic Leg Prostheses and Exoskeletons Using Deep Convolutional Neural Networks
,”
Front. Neurorobotics
,
15
, p.
730965
.10.3389/fnbot.2021.730965
104.
Grimmer
,
M.
,
Riener
,
R.
,
Walsh
,
C. J.
, and
Seyfarth
,
A.
,
2019
, “
Mobility Related Physical and Functional Losses Due to Aging and Disease - A Motivation for Lower Limb Exoskeletons
,”
J. NeuroEng. Rehabil.
,
16
(
1
), p.
2
.10.1186/s12984-018-0458-8
105.
Feng
,
Y.
,
Mai
,
J.
,
Agrawal
,
S. K.
, and
Wang
,
Q.
,
2020
, “
Energy Regeneration From Electromagnetic Induction by Human Dynamics for Lower Extremity Robotic Prostheses
,”
IEEE Trans. Robot.
,
36
(
5
), pp.
1442
1451
.10.1109/TRO.2020.2991969
106.
Laschowski
,
B.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2021
, “
Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration
,”
IEEE Trans. Med. Robot. Bionics
,
3
(
2
), pp.
455
462
.10.1109/TMRB.2021.3058323
107.
Laschowski
,
B.
,
2021
, “
Energy Regeneration and Environment Sensing for Robotic Leg Prostheses and Exoskeletons
,” Ph.D. thesis,
University of Waterloo
, Waterloo, ON, Canada.
108.
Laschowski
,
B.
,
Inkol
,
K. A.
,
Mihailidis
,
A.
, and
McPhee
,
J.
,
2022
, “
Simulation of Energy Regeneration in Human Locomotion for Efficient Exoskeleton Actuation
,” 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (
BioRob
), Seoul, Republic of Korea, Aug. 21–24, pp. 1–8.10.1109/BioRob52689.2022.9925349
You do not currently have access to this content.