Abstract

Dexterous robots have great potential to execute industrial tasks that are not suited to humans. In this work, a novel robotic mobility platform is proposed for use in the chemical industry to enable autonomous distillation column inspection—a tedious and dangerous task for humans. A roller arm mechanism is designed for a quadrupedal robot that enables moving across the distillation column. Required dynamic behaviors are generated with full-body motion planning and low-level control. The holistic process of mechanical design, planning, and control leads to desired behavior, as demonstrated by high-fidelity simulations. This marks a key step toward operating legged robots inside distillation columns.

References

1.
Wong
,
C.
,
Yang
,
E.
,
Yan
,
X.-T.
, and
Gu
,
D.
,
2018
, “
Autonomous Robots for Harsh Environments: A Holistic Overview of Current Solutions and Ongoing Challenges
,”
Syst. Sci. Control Eng.
,
6
(
1
), pp.
213
219
.10.1080/21642583.2018.1477634
2.
Takahashi
,
C.
,
Giuliani
,
M.
,
Lennox
,
B.
,
Hamel
,
W. R.
,
Stolkin
,
R.
, and
Semini
,
C.
,
2021
,
Editorial: Robotics in Extreme Environments
,
Frontiers Media SA
,
Lausanne, Switzerland
.
3.
Murphy
,
R. R.
,
Tadokoro
,
S.
,
Nardi
,
D.
,
Jacoff
,
A.
,
Fiorini
,
P.
,
Choset
,
H.
, and
Erkmen
,
A. M.
,
2008
, “
Search and Rescue Robotics
,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
1151
1173
.
4.
Pedersen
,
M. R.
,
Nalpantidis
,
L.
,
Andersen
,
R. S.
,
Schou
,
C.
,
Bøgh
,
S.
,
Krüger
,
V.
, and
Madsen
,
O.
,
2016
, “
Robot Skills for Manufacturing: From Concept to Industrial Deployment
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
282
291
.10.1016/j.rcim.2015.04.002
5.
Khan
,
A.
,
Mineo
,
C.
,
Dobie
,
G.
,
Macleod
,
C.
, and
Pierce
,
G.
,
2021
, “
Vision Guided Robotic Inspection for Parts in Manufacturing and Remanufacturing Industry
,”
J. Remanufacturing
,
11
(
1
), pp.
49
70
.10.1007/s13243-020-00091-x
6.
Katharine
,
S.
,
2019
, “
Automation: Chemistry Shoots for the Moon
,”
Nature
,
568
(
7753
), pp.
577
579
.10.1038/d41586-019-01246-y
7.
Fang
,
J.
, and
Hunt
,
K. J.
,
2021
, “
Mechanical Design and Control System Development of a Rehabilitation Robotic System for Walking With Arm Swing
,”
Front. Rehabil. Sci.
,
2
(
720182
), pp.
1
14
.10.3389/fresc.2021.720182
8.
Chignoli
,
M.
,
Kim
,
D.
,
Stanger-Jones
,
E.
, and
Kim
,
S.
,
2021
, “
The MIT Humanoid Robot: Design, Motion Planning, and Control for Acrobatic Behaviors
,”
IEEE-RAS 20th International Conference on Humanoid Robots
, Munich, Germany, July 19–21, pp.
1
8
.10.1109/HUMANOIDS47582.2021.9555782
9.
Olinski
,
M.
, and
Ziemba
,
J.
,
2014
, “
Hybrid Quadruped Robot—Mechanical Design and Gait Modelling
,”
New Advances in Mechanisms, Transmissions and Applications
,
V.
Petuya
,
C.
Pinto
, and
E.-C.
Lovasz
, eds.,
Springer, Netherlands
, pp.
183
190
.
10.
Yang
,
J.
,
Jia
,
W.
,
Sun
,
Y.
,
Pu
,
H.
,
Ma
,
S.
,
Chen
,
L.
, and
Han
,
B.
,
2017
, “
Mechanical Design of a Compact and Dexterous Quadruped Robot
,”
IEEE International Conference on Mechatronics and Automation
, Takamatsu, Japan, Aug. 6–9, pp.
1450
1456
.10.1109/ICMA.2017.8016030
11.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Madrid, Spain, Oct. 1–5, pp.
2245
2252
.10.1109/IROS.2018.8593885
12.
Yao
,
L.
,
Yu
,
H.
, and
Lu
,
Z.
,
2021
, “
Design and Driving Model for the Quadruped Robot: An Elucidating Draft
,”
Adv. Mech. Eng.
,
13
(
4
), pp.
1
14
.10.1177/16878140211009035
13.
Ur Rehman
,
B.
,
Focchi
,
M.
,
Frigerio
,
M.
,
Goldsmith
,
J.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2015
,
Design of a Hydraulically Actuated Arm for a Quadruped Robot Assistive Robotics
,
World Scientific
, Singapore, pp.
283
290
.
14.
Moran
,
S.
,
2017
, “
Distillation Columns and Towers
,”
Process Plant Layout
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
, pp.
325
338
.
15.
Zhang
,
Z.
,
Yan
,
J.
,
Kong
,
X.
,
Zhai
,
G.
, and
Liu
,
Y.
,
2021
, “
Efficient Motion Planning Based on Kinodynamic Model for Quadruped Robots Following Persons in Confined Spaces
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
1997
2006
.10.1109/TMECH.2021.3083594
16.
Shao
,
X.
,
Huang
,
Q.
,
Wang
,
Z.
,
Cai
,
Q.
, and
Wang
,
W.
,
2014
, “
Motion Planning and Compliant Control for a Quadruped Robot on Complicated Terrains
,”
IEEE International Conference on Mechatronics and Automation
, Tianjin, China, Aug. 3–6, pp.
1587
1594
.10.1109/ICMA.2014.6885937
17.
Geisert
,
M.
,
Yates
,
T.
,
Orgen
,
A.
,
Fernbach
,
P.
, and
Havoutis
,
I.
,
2019
, “
Contact Planning for the ANYmal Quadruped Robot Using an Acyclic Reachability-Based Planner
,”
Towards Autonomous Robotic Systems
,
K.
Althoefer
,
J.
Konstantinova
, and
K.
Zhang
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
275
287
.
18.
Mastalli
,
C.
,
Havoutis
,
I.
,
Focchi
,
M.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2020
, “
Motion Planning for Quadrupedal Locomotion: Coupled Planning, Terrain Mapping, and Whole-Body Control
,”
IEEE Trans. Rob.
,
36
(
6
), pp.
1635
1648
.10.1109/TRO.2020.3003464
19.
Ma
,
W.-L.
,
Csomay-Shanklin
,
N.
, and
Ames
,
A. D.
,
2020
, “
Quadrupedal Robotic Walking on Sloped Terrains Via Exact Decomposition Into Coupled Bipedal Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Las Vegas, Oct. 25–29, pp.
4006
4011
.10.1109/IROS45743.2020.9341181
20.
Ahn
,
J.
,
Jorgensen
,
S. J.
,
Bang
,
S. H.
, and
Sentis
,
L.
,
2021
, “
Versatile Locomotion Planning and Control for Humanoid Robots
,”
Front. Rob. AI
,
8
(
712239
), pp.
1
17
.10.3389/frobt.2021.712239
21.
Nguyen
,
Q.
,
Da
,
X.
,
Grizzle
,
J. W.
, and
Sreenath
,
K.
,
2020
, “
Dynamic Walking on Stepping Stones With Gait Library and Control Barrier Functions
,”
Algorithmic Foundations of Robotics XII
,
K.
Goldberg
,
P.
Abbeel
,
K.
Bekris
, and
L.
Miller
, eds.,
Springer International Publishing
,
Cham
, pp.
384
399
.
22.
Csomay-Shanklin
,
N.
,
Cosner
,
R. K.
,
Dai
,
M.
,
Taylor
,
A. J.
, and
Ames
,
A. D.
,
2021
, “
Episodic Learning for Safe Bipedal Locomotion With Control Barrier Functions and Projection-to-State Safety
,” Third Conference on Learning for Dynamics and Control,
Proceedings of Machine Learning Research
, Palo Alto, CA, June 23–24, pp.
1041
1053
.
23.
Grandia
,
R.
,
Taylor
,
A. J.
,
Ames
,
A. D.
, and
Hutter
,
M.
,
2021
, “
Multi-Layered Safety for Legged Robots Via Control Barrier Functions and Model Predictive Control
,”
IEEE International Conference on Robotics and Automation
, Xian, China, May 30–June 5, pp.
8352
8358
.
24.
Lynch
,
G. A.
,
Clark
,
J. E.
,
Lin
,
P.-C.
, and
Koditschek
,
D. E.
,
2012
, “
A Bioinspired Dynamical Vertical Climbing Robot
,”
Int. J. Rob. Res.
,
31
(
8
), pp.
974
996
.10.1177/0278364912442096
25.
Tavakoli
,
M.
, and
Viegas
,
C.
,
2015
, “
Bio-Inspired Climbing Robots
,”
Biomimetic Technologies
,
Woodhead Publishing
, Cambridge, UK, pp.
301
320
.
26.
Elbadawi
,
M.
,
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Gustafsson
,
T.
,
2018
, “
Bio-Inspired Climbing Robots in Wet Environments: Recent Trends in Adhesion Methods and Materials
,”
IEEE International Conference on Robotics and Biomimetics
, Kuala Lumpur, Malaysia, Dec. 12–15, pp.
2347
2353
.10.1109/ROBIO.2018.8665184
27.
Schiller
,
L.
,
Seibel
,
A.
, and
Schlattmann
,
J.
,
2019
, “
Toward a Gecko-Inspired, Climbing Soft Robot
,”
Front. Neurorobotics
,
13
(
106
), pp.
1
9
.10.3389/fnbot.2019.00106
28.
Farzan
,
S.
,
Hu
,
A.-P.
,
Davies
,
E.
, and
Rogers
,
J.
,
2019
, “
Feedback Motion Planning and Control of Brachiating Robots Traversing Flexible Cables
,” 2019 American Control Conference (
ACC
),
Philadelphia, PA
, July 10–12, pp.
1323
1329
.10.23919/ACC.2019.8814894
29.
Haynes
,
G. C.
,
Khripin
,
A.
,
Lynch
,
G.
,
Amory
,
J.
,
Saunders
,
A.
,
Rizzi
,
A. A.
, and
Koditschek
,
D. E.
,
2009
, “
Rapid Pole Climbing With a Quadrupedal Robot
,”
IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
2767
2772
.10.1109/ROBOT.2009.5152830
30.
Saputra
,
A. A.
,
Toda
,
Y.
,
Takesue
,
N.
, and
Kubota
,
N.
,
2019
, “
A Novel Capabilities of Quadruped Robot Moving Through Vertical Ladder Without Handrail Support
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Macau, China, Nov. 4–8, pp.
1448
1453
.10.1109/IROS40897.2019.8968175
31.
Ohara
,
K.
,
Toda
,
T.
,
Kamiyama
,
K.
,
Kojima
,
M.
,
Horade
,
M.
,
Mae
,
Y.
, and
Arai
,
T.
,
2018
, “
Energy-Efficient Narrow Wall Climbing of Six-Legged Robot
,”
Robomech. J.
,
5
(
1
), p.
26
.10.1186/s40648-018-0121-y
32.
Hereid
,
A.
, and
Ames
,
A. D.
,
2017
, “
FROST: Fast Robot Optimization and Simulation Toolkit
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vancouver, Canada, Sept. 24–28, pp.
719
726
.10.1109/IROS.2017.8202230
33.
Koenig
,
N.
, and
Howard
,
A.
,
2004
, “
Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Sendai, Japan, Sept. 28–Oct. 2, pp.
2149
2154
.10.1109/IROS.2004.1389727
34.
Ubellacker
,
W.
,
Csomay-Shanklin
,
N.
,
Molnar
,
T. G.
, and
Ames
,
A. D.
,
2021
, “
Verifying Safe Transitions Between Dynamic Motion Primitives on Legged Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Prague, Czech Republic, Sept. 27–Oct. 1, pp.
8477
8484
.
You do not currently have access to this content.