Abstract
Dexterous robots have great potential to execute industrial tasks that are not suited to humans. In this work, a novel robotic mobility platform is proposed for use in the chemical industry to enable autonomous distillation column inspection—a tedious and dangerous task for humans. A roller arm mechanism is designed for a quadrupedal robot that enables moving across the distillation column. Required dynamic behaviors are generated with full-body motion planning and low-level control. The holistic process of mechanical design, planning, and control leads to desired behavior, as demonstrated by high-fidelity simulations. This marks a key step toward operating legged robots inside distillation columns.
Issue Section:
Research Papers
References
1.
Wong
,
C.
,
Yang
,
E.
,
Yan
,
X.-T.
, and
Gu
,
D.
, 2018
, “
Autonomous Robots for Harsh Environments: A Holistic Overview of Current Solutions and Ongoing Challenges
,” Syst. Sci. Control Eng.
,
6
(1
), pp. 213
–219
.10.1080/21642583.2018.14776342.
Takahashi
,
C.
,
Giuliani
,
M.
,
Lennox
,
B.
,
Hamel
,
W. R.
,
Stolkin
,
R.
, and
Semini
,
C.
, 2021
, Editorial: Robotics in Extreme Environments
,
Frontiers Media SA
,
Lausanne, Switzerland
.3.
Murphy
,
R. R.
,
Tadokoro
,
S.
,
Nardi
,
D.
,
Jacoff
,
A.
,
Fiorini
,
P.
,
Choset
,
H.
, and
Erkmen
,
A. M.
, 2008
, “
Search and Rescue Robotics
,” Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Berlin/Heidelberg
, pp. 1151
–1173
.4.
Pedersen
,
M. R.
,
Nalpantidis
,
L.
,
Andersen
,
R. S.
,
Schou
,
C.
,
Bøgh
,
S.
,
Krüger
,
V.
, and
Madsen
,
O.
, 2016
, “
Robot Skills for Manufacturing: From Concept to Industrial Deployment
,” Rob. Comput.-Integr. Manuf.
,
37
, pp. 282
–291
.10.1016/j.rcim.2015.04.0025.
Khan
,
A.
,
Mineo
,
C.
,
Dobie
,
G.
,
Macleod
,
C.
, and
Pierce
,
G.
, 2021
, “
Vision Guided Robotic Inspection for Parts in Manufacturing and Remanufacturing Industry
,” J. Remanufacturing
,
11
(1
), pp. 49
–70
.10.1007/s13243-020-00091-x6.
Katharine
,
S.
, 2019
, “
Automation: Chemistry Shoots for the Moon
,” Nature
,
568
(7753
), pp. 577
–579
.10.1038/d41586-019-01246-y7.
Fang
,
J.
, and
Hunt
,
K. J.
, 2021
, “
Mechanical Design and Control System Development of a Rehabilitation Robotic System for Walking With Arm Swing
,” Front. Rehabil. Sci.
,
2
(720182
), pp. 1
–14
.10.3389/fresc.2021.7201828.
Chignoli
,
M.
,
Kim
,
D.
,
Stanger-Jones
,
E.
, and
Kim
,
S.
, 2021
, “
The MIT Humanoid Robot: Design, Motion Planning, and Control for Acrobatic Behaviors
,” IEEE-RAS 20th International Conference on Humanoid Robots
, Munich, Germany, July 19–21, pp. 1
–8
.10.1109/HUMANOIDS47582.2021.95557829.
Olinski
,
M.
, and
Ziemba
,
J.
, 2014
, “
Hybrid Quadruped Robot—Mechanical Design and Gait Modelling
,” New Advances in Mechanisms, Transmissions and Applications
,
V.
Petuya
,
C.
Pinto
, and
E.-C.
Lovasz
, eds.,
Springer, Netherlands
, pp. 183
–190
.10.
Yang
,
J.
,
Jia
,
W.
,
Sun
,
Y.
,
Pu
,
H.
,
Ma
,
S.
,
Chen
,
L.
, and
Han
,
B.
, 2017
, “
Mechanical Design of a Compact and Dexterous Quadruped Robot
,” IEEE International Conference on Mechatronics and Automation
, Takamatsu, Japan, Aug. 6–9, pp. 1450
–1456
.10.1109/ICMA.2017.801603011.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
, 2018
, “MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, Madrid, Spain, Oct. 1–5, pp. 2245
–2252
.10.1109/IROS.2018.859388512.
Yao
,
L.
,
Yu
,
H.
, and
Lu
,
Z.
, 2021
, “
Design and Driving Model for the Quadruped Robot: An Elucidating Draft
,” Adv. Mech. Eng.
,
13
(4
), pp. 1
–14
.10.1177/1687814021100903513.
Ur Rehman
,
B.
,
Focchi
,
M.
,
Frigerio
,
M.
,
Goldsmith
,
J.
,
Caldwell
,
D. G.
, and
Semini
,
C.
, 2015
, Design of a Hydraulically Actuated Arm for a Quadruped Robot Assistive Robotics
,
World Scientific
, Singapore, pp. 283
–290
.14.
Moran
,
S.
, 2017
, “
Distillation Columns and Towers
,” Process Plant Layout
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
, pp. 325
–338
.15.
Zhang
,
Z.
,
Yan
,
J.
,
Kong
,
X.
,
Zhai
,
G.
, and
Liu
,
Y.
, 2021
, “
Efficient Motion Planning Based on Kinodynamic Model for Quadruped Robots Following Persons in Confined Spaces
,” IEEE/ASME Trans. Mechatron.
,
26
(4
), pp. 1997
–2006
.10.1109/TMECH.2021.308359416.
Shao
,
X.
,
Huang
,
Q.
,
Wang
,
Z.
,
Cai
,
Q.
, and
Wang
,
W.
, 2014
, “
Motion Planning and Compliant Control for a Quadruped Robot on Complicated Terrains
,” IEEE International Conference on Mechatronics and Automation
, Tianjin, China, Aug. 3–6, pp. 1587
–1594
.10.1109/ICMA.2014.688593717.
Geisert
,
M.
,
Yates
,
T.
,
Orgen
,
A.
,
Fernbach
,
P.
, and
Havoutis
,
I.
, 2019
, “
Contact Planning for the ANYmal Quadruped Robot Using an Acyclic Reachability-Based Planner
,” Towards Autonomous Robotic Systems
,
K.
Althoefer
,
J.
Konstantinova
, and
K.
Zhang
, eds.,
Springer International Publishing
, Cham, Switzerland, pp. 275
–287
.18.
Mastalli
,
C.
,
Havoutis
,
I.
,
Focchi
,
M.
,
Caldwell
,
D. G.
, and
Semini
,
C.
, 2020
, “
Motion Planning for Quadrupedal Locomotion: Coupled Planning, Terrain Mapping, and Whole-Body Control
,” IEEE Trans. Rob.
,
36
(6
), pp. 1635
–1648
.10.1109/TRO.2020.300346419.
Ma
,
W.-L.
,
Csomay-Shanklin
,
N.
, and
Ames
,
A. D.
, 2020
, “
Quadrupedal Robotic Walking on Sloped Terrains Via Exact Decomposition Into Coupled Bipedal Robots
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, Las Vegas, Oct. 25–29, pp. 4006
–4011
.10.1109/IROS45743.2020.934118120.
Ahn
,
J.
,
Jorgensen
,
S. J.
,
Bang
,
S. H.
, and
Sentis
,
L.
, 2021
, “
Versatile Locomotion Planning and Control for Humanoid Robots
,” Front. Rob. AI
,
8
(712239
), pp. 1
–17
.10.3389/frobt.2021.71223921.
Nguyen
,
Q.
,
Da
,
X.
,
Grizzle
,
J. W.
, and
Sreenath
,
K.
, 2020
, “
Dynamic Walking on Stepping Stones With Gait Library and Control Barrier Functions
,” Algorithmic Foundations of Robotics XII
,
K.
Goldberg
,
P.
Abbeel
,
K.
Bekris
, and
L.
Miller
, eds.,
Springer International Publishing
,
Cham
, pp. 384
–399
.22.
Csomay-Shanklin
,
N.
,
Cosner
,
R. K.
,
Dai
,
M.
,
Taylor
,
A. J.
, and
Ames
,
A. D.
, 2021
, “
Episodic Learning for Safe Bipedal Locomotion With Control Barrier Functions and Projection-to-State Safety
,” Third Conference on Learning for Dynamics and Control, Proceedings of Machine Learning Research
, Palo Alto, CA, June 23–24, pp. 1041
–1053
.23.
Grandia
,
R.
,
Taylor
,
A. J.
,
Ames
,
A. D.
, and
Hutter
,
M.
, 2021
, “
Multi-Layered Safety for Legged Robots Via Control Barrier Functions and Model Predictive Control
,” IEEE International Conference on Robotics and Automation
, Xian, China, May 30–June 5, pp. 8352
–8358
.24.
Lynch
,
G. A.
,
Clark
,
J. E.
,
Lin
,
P.-C.
, and
Koditschek
,
D. E.
, 2012
, “
A Bioinspired Dynamical Vertical Climbing Robot
,” Int. J. Rob. Res.
,
31
(8
), pp. 974
–996
.10.1177/027836491244209625.
Tavakoli
,
M.
, and
Viegas
,
C.
, 2015
, “
Bio-Inspired Climbing Robots
,” Biomimetic Technologies
,
Woodhead Publishing
, Cambridge, UK, pp. 301
–320
.26.
Elbadawi
,
M.
,
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Gustafsson
,
T.
, 2018
, “
Bio-Inspired Climbing Robots in Wet Environments: Recent Trends in Adhesion Methods and Materials
,” IEEE International Conference on Robotics and Biomimetics
, Kuala Lumpur, Malaysia, Dec. 12–15, pp. 2347
–2353
.10.1109/ROBIO.2018.866518427.
Schiller
,
L.
,
Seibel
,
A.
, and
Schlattmann
,
J.
, 2019
, “
Toward a Gecko-Inspired, Climbing Soft Robot
,” Front. Neurorobotics
,
13
(106
), pp. 1
–9
.10.3389/fnbot.2019.0010628.
Farzan
,
S.
,
Hu
,
A.-P.
,
Davies
,
E.
, and
Rogers
,
J.
, 2019
, “
Feedback Motion Planning and Control of Brachiating Robots Traversing Flexible Cables
,” 2019 American Control Conference (ACC
),
Philadelphia, PA
, July 10–12, pp. 1323
–1329
.10.23919/ACC.2019.881489429.
Haynes
,
G. C.
,
Khripin
,
A.
,
Lynch
,
G.
,
Amory
,
J.
,
Saunders
,
A.
,
Rizzi
,
A. A.
, and
Koditschek
,
D. E.
, 2009
, “
Rapid Pole Climbing With a Quadrupedal Robot
,” IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp. 2767
–2772
.10.1109/ROBOT.2009.515283030.
Saputra
,
A. A.
,
Toda
,
Y.
,
Takesue
,
N.
, and
Kubota
,
N.
, 2019
, “
A Novel Capabilities of Quadruped Robot Moving Through Vertical Ladder Without Handrail Support
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, Macau, China, Nov. 4–8, pp. 1448
–1453
.10.1109/IROS40897.2019.896817531.
Ohara
,
K.
,
Toda
,
T.
,
Kamiyama
,
K.
,
Kojima
,
M.
,
Horade
,
M.
,
Mae
,
Y.
, and
Arai
,
T.
, 2018
, “
Energy-Efficient Narrow Wall Climbing of Six-Legged Robot
,” Robomech. J.
,
5
(1
), p. 26
.10.1186/s40648-018-0121-y32.
Hereid
,
A.
, and
Ames
,
A. D.
, 2017
, “
FROST: Fast Robot Optimization and Simulation Toolkit
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vancouver, Canada, Sept. 24–28, pp. 719
–726
.10.1109/IROS.2017.820223033.
Koenig
,
N.
, and
Howard
,
A.
, 2004
, “
Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, Sendai, Japan, Sept. 28–Oct. 2, pp. 2149
–2154
.10.1109/IROS.2004.138972734.
Ubellacker
,
W.
,
Csomay-Shanklin
,
N.
,
Molnar
,
T. G.
, and
Ames
,
A. D.
, 2021
, “
Verifying Safe Transitions Between Dynamic Motion Primitives on Legged Robots
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, Prague, Czech Republic, Sept. 27–Oct. 1, pp. 8477
–8484
.Copyright © 2023 by ASME
You do not currently have access to this content.