Abstract

Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasi-periodic metamaterial with periodic local resonator attachments. We model a one-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasi-periodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasi-periodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps.

References

1.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Flexible Mechanical Meta- Materials.
,”
Nat. Rev. Mater.
,
2
(
11
), p.
17066
.10.1038/natrevmats.2017.66
2.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook.
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.10.1115/1.4026911
3.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.10.1126/sciadv.1501595
4.
Kivshar
,
Y. S.
, and
Flytzanis
,
N.
,
1992
, “
Gap Solitons in Diatomic Lattices
,”
Phys. Rev. A
,
46
(
12
), pp.
7972
7978
.10.1103/PhysRevA.46.7972
5.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J. C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
(
10
), p.
103
.10.1103/PhysRevLett.103.104301
6.
Cai
,
W.
, and
Shalaev
,
V. M.
,
2010
,
Optical Metamaterials
, Vol.
10
,
Springer
, Berlin.
7.
Christensen
,
J.
,
Kadic
,
M.
,
Wegener
,
M.
,
Kraft
,
O.
, and
Wegener
,
M.
,
2015
, “
Vibrant Times for Mechanical Metamaterials
,”
MRS Commun.
,
5
(
3
), pp.
453
462
.10.1557/mrc.2015.51
8.
Martínez-Sala
,
R.
,
Sancho
,
J.
,
Sánchez
,
J. V.
,
Gómez
,
V.
,
Llinares
,
J.
, and
Meseguer
,
F.
,
1995
, “
Sound Attenuation by Sculpture
,”
Nature
,
378
(
6554
), pp.
241
241
.10.1038/378241a0
9.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.10.1016/j.jsv.2014.01.009
10.
Li
,
Y.
,
Baker
,
E.
,
Reissman
,
T.
,
Sun
,
C.
, and
Liu
,
W. K.
,
2017
, “
Design of Mechanical Metamaterials for Simultaneous Vibration Isolation and Energy Harvesting
,”
Appl. Phys. Lett.
,
111
(
25
), p.
251903
.10.1063/1.5008674
11.
Lu
,
Z.
,
Wang
,
Z.
,
Zhou
,
Y.
, and
Lu
,
X.
,
2018
, “
Nonlinear Dissipative Devices in Structural Vibration Control: A Review
,”
J. Sound Vib.
,
423
, pp.
18
49
.10.1016/j.jsv.2018.02.052
12.
Bukhari
,
M.
, and
Barry
,
O.
,
2023
, “
Broadband Electromechanical Diode: Acoustic Non-Reciprocity in Weakly Nonlinear Metamaterials With Electromechanical Resonators
,”
ASME J. Vib. Acoust.
,
145
(
2
), p. 021003.10.1115/1.4054962
13.
Achaoui
,
Y.
,
Laude
,
V.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2013
, “
Local Resonances in Phononic Crystals and in Random Arrangements of Pillars on a Surface
,”
J. Appl. Phys.
,
114
(
10
), p.
104503
.10.1063/1.4820928
14.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.10.1016/0022-460X(92)90059-7
15.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.10.1126/science.289.5485.1734
16.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.10.1115/1.4004592
17.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.10.1115/1.4000784
18.
Manimala
,
J. M.
, and
Sun
,
C. T.
,
2016
, “
Numerical Investigation of Amplitude-Dependent Dynamic Response in Acoustic Metamaterials With Nonlinear Oscillators
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3365
3372
.10.1121/1.4949543
19.
Nadkarni
,
N.
,
Daraio
,
C.
, and
Kochmann
,
D. M.
,
2014
, “
Dynamics of Periodic Mechanical Structures Containing Bistable Elastic Elements: From Elastic to Solitary Wave Propagation
,”
Phys. Rev. E
,
90
(
2
), p.
023204
.10.1103/PhysRevE.90.023204
20.
Popa
,
B.-I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
,
2011
, “
Experimental Acoustic Ground Cloak in Air
,”
Phys. Rev. Lett.
,
106
(
25
), p.
253901
.10.1103/PhysRevLett.106.253901
21.
Farhat
,
M.
,
Guenneau
,
S.
, and
Enoch
,
S.
,
2009
, “
Ultrabroadband Elastic Cloaking in Thin Plates
,”
Phys. Rev. Lett.
,
103
(
2
), p.
024301
.10.1103/PhysRevLett.103.024301
22.
Darabi
,
A.
,
Zareei
,
A.
,
Alam
,
M.-R.
, and
Leamy
,
M. J.
,
2018
, “
Experimental Demonstration of an Ultrabroadband Nonlinear Cloak for Flexural Waves
,”
Phys. Rev. Lett.
,
121
(
17
), p.
174301
.10.1103/PhysRevLett.121.174301
23.
Li
,
X.-F.
,
Ni
,
X.
,
Feng
,
L.
,
Lu
,
M.-H.
,
He
,
C.
, and
Chen
,
Y.-F.
,
2011
, “
Tunable Unidirectional Sound Propagation Through a Sonic-Crystal-Based Acoustic Diode
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084301
.10.1103/PhysRevLett.106.084301
24.
Ma
,
C.
,
Parker
,
R. G.
, and
Yellen
,
B. B.
,
2013
, “
Optimization of an Acoustic Rectifier for Uni- Directional Wave Propagation in Periodic Mass–Spring Lattices
,”
J. Sound Vib.
,
332
(
20
), pp.
4876
4894
.10.1016/j.jsv.2013.04.013
25.
Moore
,
K. J.
,
Bunyan
,
J.
,
Tawfick
,
S.
,
Gendelman
,
O. V.
,
Li
,
S.
,
Leamy
,
M.
, and
Vakakis
,
A. F.
,
2018
, “
Nonreciprocity in the Dynamics of Coupled Oscillators With Nonlinearity, Asymmetry, and Scale Hierarchy
,”
Phys. Rev. E
,
97
(
1
), p.
012219
.10.1103/PhysRevE.97.012219
26.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley
, New York.
27.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
, New York.
28.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
.10.1115/1.4000775
29.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2011
, “
Multiple Scales Analysis of Wave–Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
193
203
.10.1007/s11071-010-9796-1
30.
Abedin-Nasab
,
M. H.
,
Bastawrous
,
M. V.
, and
Hussein
,
M. I.
,
2020
, “
Explicit Dispersion Rela-Tion for Strongly Nonlinear Flexural Waves Using the Homotopy Analysis Method.
,”
Nonlinear Dyn.
,
99
(
1
), pp.
737
752
.10.1007/s11071-019-05383-x
31.
Ganesh
,
R.
, and
Gonella
,
S.
,
2013
, “
Spectro-Spatial Wave Features as Detectors and Classifiers of Nonlinearity in Periodic Chains
,”
Wave Motion
,
50
(
5
), pp.
994
835
.10.1016/j.wavemoti.2013.05.002
32.
Zhou
,
W. J.
,
Li
,
X. P.
,
Wang
,
Y. S.
,
Chen
,
W. Q.
, and
Huang
,
G. L.
,
2018
, “
Spectro-Spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,”
J. Sound Vib.
,
413
, pp.
250
269
.10.1016/j.jsv.2017.10.023
33.
Bukhari
,
M.
, and
Barry
,
O.
,
2019
, “
On the Spectro-Spatial Wave Features in Nonlinear Metamaterials With Multiple Local Resonators
,”
ASME
Paper No. DETC2019-98414.10.1115/DETC2019-98414
34.
Bukhari
,
M.
, and
Barry
,
O.
,
2020
, “
Simultaneous Energy Harvesting and Vibration Control in a Nonlinear Metastructure: A Spectro-Spatial Analysis
,”
J. Sound Vib.
,
473
, p.
115215
.10.1016/j.jsv.2020.115215
35.
Ma
,
G.
,
Xiao
,
M.
, and
Chan
,
C. T.
,
2019
, “
Topological Phases in Acoustic and Mechanical Systems
,”
Nat. Rev. Phys.
,
1
(
4
), pp.
281
294
.10.1038/s42254-019-0030-x
36.
Mousavi
,
S. H.
,
Khanikaev
,
A. B.
, and
Wang
,
Z.
,
2015
, “
Topologically Protected Elastic Waves in Phononic Metamaterials
,”
Nat. Commun.
,
6
(
1
), pp.
1
7
.10.1038/ncomms9682
37.
Miniaci
,
M.
,
Pal
,
R. K.
,
Morvan
,
B.
, and
Ruzzene
,
M.
,
2018
, “
Experimental Observation of Topologically Protected Helical Edge Modes in Patterned Elastic Plates
,”
Phys. Rev. X
,
8
(
3
), p.
031074
.10.1103/PhysRevX.8.031074
38.
Chaunsali
,
R.
,
Chen
,
C.-W.
, and
Yang
,
J.
,
2018
, “
Subwavelength and Directional Control of Flexural Waves in Zone-Folding Induced Topological Plates
,”
Phys. Rev. B
,
97
(
5
), p.
054307
.10.1103/PhysRevB.97.054307
39.
Rosa
,
M. I. N.
,
Guo
,
Y.
, and
Ruzzene
,
M.
,
2021
, “
Exploring Topology of 1D Quasiperiodic Metas- Tructures Through Modulated Lego Resonators
,”
Appl. Phys. Lett.
,
118
(
13
), p.
131901
.10.1063/5.0042294
40.
Apigo
,
D. J.
,
Qian
,
K.
,
Prodan
,
C.
, and
Prodan
,
E.
,
2018
, “
Topological Edge Modes by Smart Patterning
,”
Phys. Rev. Mater.
,
2
(
12
), p.
124203
.10.1103/PhysRevMaterials.2.124203
41.
Xia
,
Y.
,
Erturk
,
A.
, and
Ruzzene
,
M.
,
2020
, “
Topological Edge States in Quasiperiodic Locally Resonant Metastructures
,”
Phys. Rev. Appl.
,
13
(
1
), p.
014023
.10.1103/PhysRevApplied.13.014023
42.
LeGrande
,
J.
,
Bukhari
,
M.
, and
Barry
,
O.
,
2023
, “
Effect of Electromechanical Coupling on Locally Resonant Quasiperiodic Metamaterials
,”
AIP Adv.
,
13
(
1
), p.
015112
.10.1063/5.0119914
43.
Ni
,
X.
,
Chen
,
K.
,
Weiner
,
M.
,
Apigo
,
D. J.
,
Prodan
,
C.
,
Alu
,
A.
,
Prodan
,
E.
, and
Khanikaev
,
A. B.
,
2019
, “
Observation of Hofstadter Butterflyand Topological Edge States in Reconfigurable Quasi-Periodic Acoustic Crystals
,”
Commun. Phys.
,
2
(
1
), pp.
1
7
.10.1038/s42005-019-0151-7
44.
Pal
,
R. K.
,
Rosa
,
M. I. N.
, and
Ruzzene
,
M.
,
2019
, “
Topological Bands and Localized Vibration Modes in Quasiperiodic Beams
,”
New J. Phys.
,
21
(
9
), p.
093017
.10.1088/1367-2630/ab3cd7
45.
Rosa
,
M. I. N.
,
Pal
,
R. K.
,
Arruda
,
José R. F.
, and
Ruzzene
,
M.
,
2019
, “
Edge States and Topological Pumping in Spatially Modulated Elastic Lattices
,”
Phys. Rev. Lett.
,
123
(
3
), p.
034301
.10.1103/PhysRevLett.123.034301
46.
Kumar Pal
,
R.
,
Vila
,
J.
,
Leamy
,
M.
, and
Ruzzene
,
M.
,
2018
, “
Amplitude-Dependent Topological Edge States in Nonlinear Phononic Lattices
,”
Phys. Rev. E
,
97
(
3
), p.
032209
.10.1103/PhysRevE.97.032209
47.
Vila
,
J.
,
Paulino
,
G. H.
, and
Ruzzene
,
M.
,
2019
, “
Role of Nonlinearities in Topological Protection: Testing Magnetically Coupled Fidget Spinners
,”
Phys. Rev. B
,
99
(
12
), p.
125116
.10.1103/PhysRevB.99.125116
48.
Darabi
,
A.
, and
Leamy
,
M. J.
,
2019
, “
Tunable Nonlinear Topological Insulator for Acoustic Waves
,”
Phys. Rev. Appl.
,
12
(
4
), p.
044030
.10.1103/PhysRevApplied.12.044030
49.
Tempelman
,
J. R.
,
Matlack
,
K. H.
, and
Vakakis
,
A. F.
,
2021
, “
Topological Protection in a Strongly Nonlinear Interface Lattice
,”
Phys. Rev. B
,
104
(
17
), p.
174306
.10.1103/PhysRevB.104.174306
50.
Chaunsali
,
R.
,
Xu
,
H.
,
Yang
,
J.
,
Kevrekidis
,
P. G.
, and
Theocharis
,
G.
,
2021
, “
Stability of Topological Edge States Under Strong Nonlinear Effects
,”
Phys. Rev. B
,
103
(
2
), p.
024106
.10.1103/PhysRevB.103.024106
51.
Snee
,
D. D.
, and
Ma
,
Y.-P.
,
2019
, “
Edge Solitons in a Nonlinear Mechanical Topological Insulator
,”
Extreme Mech. Lett.
,
30
, p.
100487
.10.1016/j.eml.2019.100487
52.
Chaunsali
,
R.
, and
Theocharis
,
G.
,
2019
, “
Self-Induced Topological Transition in Phononic Crystals by Nonlinearity Management
,”
Phys. Rev. B
,
100
(
1
), p.
014302
.10.1103/PhysRevB.100.014302
53.
Chen
,
B. G.-G.
,
Upadhyaya
,
N.
, and
Vitelli
,
V.
,
2014
, “
Nonlinear Conduction Via Solitons in a Topological Mechanical Insulator
,”
Proc. Natl. Acad. Sci.
,
111
(
36
), pp.
13004
13009
.10.1073/pnas.1405969111
54.
Alshaqaq
,
M.
, and
Erturk
,
A.
,
2020
, “
Graded Multifunctional Piezoelectric Metastructures for Wideband Vibration Attenuation and Energy Harvesting
,”
Smart Mater. Struct.
,
30
(
1
), p.
015029
.10.1088/1361-665X/abc7fa
55.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezo- Electric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
(
6
), p.
064902
.10.1063/1.4752468
56.
Bukhari
,
M. A.
,
Barry
,
O. R.
, and
Vakakis
,
A. F.
,
2023
, “
Breather Propagation and Arrest in a Strongly Nonlinear Locally Resonant Lattice
,”
Mech. Syst. Signal Process.
,
183
, p.
109623
.10.1016/j.ymssp.2022.109623
57.
Bukhari
,
M.
, and
Barry
,
O.
,
2022
, “
Substantial Frequency Conversion at Long-Wavelength Limit in Metamaterial With Weakly Nonlinear Local Electromechanical Resonators: Analytical, Computational, and Experimental Study
,”
Int. J. Non-Linear Mech.
,
147
, p.
104226
.10.1016/j.ijnonlinmec.2022.104226
58.
Rosa
,
M. I. N.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2023
, “
Amplitude-Dependent Edge States and Discrete Breathers in Nonlinear Modulated Phononic Lattices
,”
New J. Phys.
,
25
(
10
), p.
103053
.10.1088/1367-2630/ad016f
59.
Flach
,
S.
, and
Willis
,
C. R.
,
1998
, “
Discrete Breathers
,”
Phys. Rep.
,
295
(
5
), pp.
181
264
.10.1016/S0370-1573(97)00068-9
60.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectifica- Tion.
,”
Nat. Mater.
,
10
(
9
), pp.
665
668
.10.1038/nmat3072
61.
LeGrande
,
J.
,
Bukhari
,
M.
, and
Barry
,
O.
,
2022
, “
Topological Properties and Localized Vibration Modes in Quasiperiodic Metamaterials With Electromechanical Local Resonators
,”
ASME
Paper No. DETC2022-90025.10.1115/DETC2022-90025
You do not currently have access to this content.