Abstract

Variational mode decomposition (VMD) is a typical signal-processing method for fault identification in rolling bearing. In extracting fault characteristics from vibration signals of bearing with VMD algorithm, an inaccurate modal number will probably result in incorrect decomposition of signal and difficulty in identifying a fault. For that, first, the paper adaptively chose from component signals obtained by VMD according to the mean value of kurtosis. Second, according to chosen component signals, a new Weighted-kurtosis was built to adaptively determine the weight coefficient of chosen component signals. Third, rebuilding was implemented with weight coefficient and component signals to enhance fault features of the signal; meanwhile, concerning about the sensitivity of margin factor to impact features in the early stage of fault, margin factor of reconstructed signals was used to adaptively determine optimal modal number of VMD. Finally, compound faults of bearings were recognized by the spectrum of autocorrelation function (AF) of reconstructed signals corresponding to optimal modal number. The effectiveness of proposed method was validated by analyzing the vibration data of different compound fault types and sensor positions. The result has indicated that the proposed method is more effective than classical method to suppress noise interference, enhance fault features, and precisely identify the combined fault types of rolling bearings.

References

1.
Zheng
,
J. D.
,
Cao
,
S. J.
,
Pan
,
H. Y.
, and
Ni
,
Q.
,
2022
, “
Spectral Envelope-Based Adaptive Empirical Fourier Decomposition Method and Its Application to Rolling Bearing Fault Diagnosis
,”
ISA Trans.
,
129
, pp.
476
492
.10.1016/j.isatra.2022.02.049
2.
Wang
,
X.
,
Mao
,
D. X.
, and
Li
,
X. D.
,
2021
, “
Bearing Fault Diagnosis Based on Vibro-Acoustic Data Fusion and 1D-CNN Network
,”
Measurement
,
173
,p.
108518
.10.1016/j.measurement.2020.108518
3.
Che
,
C. C.
,
Wang
,
H. W.
,
Xiong
,
M. L.
, and
Ni
,
X. M.
,
2022
, “
Few-Shot Fault Diagnosis of Rolling Bearing Under Variable Working Conditions Based on Ensemble Meta-Learning
,”
Digit Signal Process.
,
131
, p.
103777
.10.1016/j.dsp.2022.103777
4.
Zhang
,
K.
,
Deng
,
Y. J.
,
Chen
,
P.
,
Ma
,
C. Y.
, and
Xu
,
Y. G.
,
2022
, “
Quaternion Empirical Wavelet Transform and Its Applications in Rolling Bearing Fault Diagnosis
,”
Measurement
,
195
,p.
111179
.10.1016/j.measurement.2022.111179
5.
Sun
,
Y. J.
,
Li
,
S. H.
, and
Wang
,
X. H.
,
2021
, “
Bearing Fault Diagnosis Based on EMD and Improved Chebyshev Distance in SDP Image
,”
Measurement
,
176
,p.
109100
.10.1016/j.measurement.2021.109100
6.
Liu
,
H. H.
, and
Han
,
M. H.
,
2014
, “
A Fault Diagnosis Method Based on Local Mean Decomposition and Multi-Scale Entropy for Roller Bearings
,”
Mech. Mach. Theory
,
75
, pp.
67
78
.10.1016/j.mechmachtheory.2014.01.011
7.
Wang
,
Y. X.
, and
Markert
,
R.
,
2016
, “
Filter Bank Property of Variational Mode Decomposition and Its Applications
,”
Signal Process.
,
120
, pp.
509
521
.10.1016/j.sigpro.2015.09.041
8.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. Math. Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
.10.1098/rspa.1998.0193
9.
Li
,
Y. Q.
, and
Peng
,
Z. R.
,
2021
, “
Fault Diagnosis of Rolling Bearings Based on VMD With Adaptive Parameters
,”
Noise Vib. Control
,
41
(
5
), pp.
139
146
.10.3969/j.issn.1006-1355.2021.05.023
10.
Dragomiretskiy
,
K.
, and
Zosso
,
D.
,
2014
, “
Variational Mode Decomposition
,”
IEEE Trans. Signal Process.
,
62
(
3
), pp.
531
544
.10.1109/TSP.2013.2288675
11.
Gu
,
J.
,
Peng
,
Y. X.
,
Lu
,
H.
,
Chang
,
X. D.
, and
Chen
,
G. A.
,
2022
, “
A Novel Fault Diagnosis Method of Rotating Machinery Via VMD, CWT and Improved CNN
,”
Measurement
,
200
, p.
111635
.10.1016/j.measurement.2022.111635
12.
Xu
,
Z. F.
,
Li
,
C.
, and
Yang
,
Y.
,
2020
, “
Fault Diagnosis of Rolling Bearing of Wind Turbines Based on the Variational Mode Decomposition and Deep Convolutional Neural Networks
,”
Appl. Soft. Comput.
,
95
, p.
106515
.10.1016/j.asoc.2020.106515
13.
Chen
,
X. J.
,
Yang
,
Y. M.
,
Cui
,
Z. X.
, and
Shen
,
J.
,
2019
, “
Vibration Fault Diagnosis of Wind Turbines Based on Variational Mode Decomposition and Energy Entropy
,”
Energy
,
174
, pp.
1100
1109
.10.1016/j.energy.2019.03.057
14.
Tang
,
G. J.
, and
Wang
,
X. L.
,
2015
, “
Parameter Optimized Variational Mode Decomposition Method With Application to Incipient Fault Diagnosis of Rolling Bearing
,”
J. Xi’an Jiaotong Univ.
,
49
(
5
), pp.
73
81
.https://link.oversea.cnki.net/doi/10.7652/xjtuxb201505012
15.
Jin
,
Z. Z.
,
He
,
D. Q.
, and
Wei
,
Z. X.
,
2022
, “
Intelligent Fault Diagnosis of Train Axle Box Bearing Based on Parameter Optimization VMD and Improved DBN
,”
Eng. Appl. Artif. Intell.
,
110
, p.
104713
.10.1016/j.engappai.2022.104713
16.
Wang
,
J. X.
,
Zhan
,
C. S.
,
Li
,
S. P.
,
Zhao
,
Q. C.
,
Liu
,
J. Q.
, and
Xie
,
Z. J.
,
2022
, “
Adaptive Variational Mode Decomposition Based on Archimedes Optimization Algorithm and Its Application to Bearing Fault Diagnosis
,”
Measurement
,
191
, p.
110798
.10.1016/j.measurement.2022.110798
17.
Ali
,
D.
,
Reza
,
H.
,
Mir
,
M. E.
, and
Mir
,
B. E.
,
2021
, “
Incipient Fault Diagnosis of Bearings Based on Parameter-Optimized VMD and Envelope Spectrum Weighted Kurtosis Index With a New Sensitivity Assessment Threshold
,”
ISA Trans.
,
114
, pp.
413
433
.10.1016/j.isatra.2020.12.041
18.
Li
,
H.
,
Liu
,
T.
,
Wu
,
X.
, and
Chen
,
Q.
,
2020
, “
An Optimized VMD Method and Its Applications in Bearing Fault Diagnosis
,”
Measurement
,
166
, p.
108185
.10.1016/j.measurement.2020.108185
19.
Chen
,
B. J.
,
Chen
,
X. L.
,
Chen
,
F. F.
,
Zhou
,
B.
,
Xiao
,
W. R.
,
Fu
,
W. L.
, and
Li
,
G. F.
,
2022
, “
Integrated Early Fault Diagnosis Method Based on Direct Fast Iterative Filtering Decomposition and Effective Weighted Sparseness Kurtosis to Rolling Bearings
,”
Mech. Syst. Signal. Process.
,
171
, p.
108897
.10.1016/j.ymssp.2022.108897
20.
Mao
,
H.
,
Wei
,
Z. G.
,
Liu
,
Y. S.
,
Wei
,
Y. N.
,
Wang
,
H. Y.
, and
Lu
,
Q.
,
2022
, “
Fault Feature Extraction of Low-Speed Heavy-Duty Rolling Bearings Based on VMD-PE-MCKD
,”
Noise Vib. Control
,
42
(
4
), pp.
152
157
.https://link.oversea.cnki.net/doi/10.3969/j.issn.1006-1355.2022.04.025
21.
Meng
,
Z.
,
Liu
,
Z. H.
, and
Lyu
,
M.
,
2020
, “
Fault Diagnosis for Rolling Bearings on the Improved Singular Value Decomposition and Spectral Kurtosis
,”
China Mech. Eng.
,
31
(
20
), pp.
2420
2428
.https://link.oversea.cnki.net/doi/10.3969/j.issn.1004-132X.2020.20.004
22.
Swarup
,
K. L.
,
Biplab
,
S.
,
Sourav
,
K.
, and
Sayantani
,
R.
,
2022
, “
A Novel Signal Denoising Method Using Stationary Wavelet Transform and Particle Swarm Optimization With Application to Rolling Element Bearing Fault Diagnosis
,”
Mater. Today: Proc.
,
66
(
9
), pp.
3935
3943
.10.1016/j.matpr.2022.07.386
23.
Lu
,
J. T.
,
Yao
,
T.
,
Li
,
S. M.
, and
Cui
,
R. Q.
,
2022
, “
An Intelligent Fault Diagnosis Method for Rolling Bearings Based on Hybrid Characteristics
,”
J. Vib. Shock
,
41
(
16
), pp.
79
84
.
24.
Zhang
,
L.
,
Yan
,
L. W.
,
Xiong
,
G. L.
, and
Hu
,
J. F.
,
2021
, “
Fault Diagnosis of Locomotive Wheel Set Bearing Based on EWT-MCKD
,”
J. Railway Sci. Eng.
,
18
(
10
), pp.
2722
2732
25.
Wu
,
L.
,
Wang
,
J. X.
,
Zhang
,
X.
, and
Liu
,
Z. W.
,
2022
, “
Blind Deconvolution Based on Reweighted-Kurtosis Maximization for Wind Turbine Fault Diagnosis
,”
China Mech. Eng.
,
33
(
19
), pp.
2356
2363
.https://link.oversea.cnki.net/doi/10.3969/j.issn.1004-132X.2022.19.010
26.
Zheng
,
Y.
,
Hu
,
J. Z.
,
Jia
,
M. P.
,
Xu
,
F. Y.
, and
Tong
,
Q. J.
,
2020
, “
A Method for Rolling Bearing Fault Feature Extraction Based on Parametric Optimization VMD
,”
J. Vib. Shock
,
39
(
21
), pp.
195
202
.https://jvs.sjtu.edu.cn/EN/Y2020/V39/I21/195
27.
Xu, Y., and Xia, X., 2021, “Measurement on Groove Raceway Damaging Diameter of Inner Ring for Vibration Performance of Rolling Bearing,”
J. Aerosp. Power.
, 36(4), pp .734–740.https://link.oversea.cnki.net/doi/10.13224/j.cnki.jasp.2021.04.006
28.
An
,
X. L.
, and
Yang
,
J. J.
,
2016
, “
Denoising of Hydropower Unit Vibration Signal Based on Variational Mode Decomposition and Approximate Entropy
,”
Trans. Inst. Meas. Control.
,
38
(
3
), pp.
282
292
.10.1177/0142331215592064
29.
Yu
,
M. Y.
,
Guo
,
G. H.
,
Fang
,
M. H.
, and
Cong
,
H. N.
,
2022
, “
Intershaft Bearing Compound Faults Identification by Using VMD and a New Index: The Activity Parameter in Hjorth Parameters
,”
Nonlinear Dyn.
,
110
(
3
), pp.
2657
2672
.10.1007/s11071-022-07753-4
30.
Li
,
H.
,
Wu
,
X.
,
Liu
,
T.
,
Li
,
S. B.
,
Zhang
,
B. M.
,
Zhou
,
G.
, and
Huang
,
T.
,
2022
, “
Composite Fault Diagnosis for Rolling Bearing Based on Parameter-Optimized VMD
,”
Measurement
,
201
,p.
111637
.10.1016/j.measurement.2022.111637
31.
Yu
,
M. Y.
, and
Fang
,
M. H.
,
2022
, “
Feature Extraction of Rolling Bearing Multiple Faults Based on Correlation Coefficient and Hjorth Parameter
,”
ISA Trans.
,
129
, pp.
442
458
.10.1016/j.isatra.2022.02.015
32.
Mehni
,
M. B.
, and
Mehni
,
M. B.
,
2023
, “
Reliability Analysis With Cross-Entropy Based Adaptive Markov Chain Importance Sampling and Control Variates
,”
Reliab. Eng. Syst. Saf.
,
231
, p.
109014
.10.1016/j.ress.2022.109014
33.
Cao
,
L. L.
,
Li
,
J.
,
Peng
,
Z.
,
Han
,
W. D.
, and
Zhang
,
Y. F.
,
2021
, “
Fault Diagnosis of Rolling Bearing Based on EEMD and Fast Spectral Kurtosis
,”
J. Mech. Electr. Eng.
,
38
(
10
), pp.
1311
1316
.
You do not currently have access to this content.