Numerical simulations of the flow past elliptic cylinders with different eccentricities have been performed using a parallel incompressible computational fluid-dynamics (CFD) solver. The pressure is integrated over the surface to compute the lift and drag forces on the cylinders. The numerical results of different cases are then used to develop reduced-order models for the lift and drag coefficients. The lift coefficient is modeled with a generalized van der Pol–Duffing oscillator and the drag coefficient is expressed in terms of the lift coefficient. The parameters in the oscillator model are computed for each elliptic cylinder. The results of the model match the CFD results not only in the time domain but also in the spectral domain.

1.
Roshko
,
A.
, 1955, “
On the Wake and Drag Of Bluff Bodies
,”
J. Aero. Sci.
0095-9812,
22
(
2
), pp.
124
132
.
2.
Bishop
,
R.
, and
Hassan
,
A.
, 1964, “
The Lift and Drag Forces on a Circular Cylinder in Flowing Fluid
,”
Proc. R. Soc. London, Ser. A
1364-5021,
277
, pp.
32
50
.
3.
Karniadakis
,
G. E.
, and
Triantafyllou
,
G. S.
, 1992, “
Three-Dimensional Dynamics and Transition to Turbulence in the Wake of Bluff Objects
,”
J. Fluid Mech.
0022-1120,
238
, pp.
1
30
.
4.
Roshko
,
A.
, 1954, “
On the Development of Turbulent Wakes From Vortex Streets
,” NACA Report No. 1191.
5.
Tomboulides
,
A. G.
,
Israeli
,
M.
, and
Karniadakis
,
G. E.
, 1989, “
Efficient Removal of Boundary Divergence Errors in Time-Splitting Methods
,”
J. Sci. Comput.
0885-7474,
4
(
3
), pp.
291
308
.
6.
Williamson
,
C. H. K.
, 1996, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
477
539
.
7.
Wu
,
J.
,
Sheridan
,
J.
, and
Welsh
,
M. C.
, 1994, “
An Experimental Investigation of the Streamwise Vortices in the Wake of a Bluff Body
,”
J. Fluids Struct.
0889-9746,
8
, pp.
621
635
.
8.
Hartlen
,
R.
, and
Currie
,
I.
, 1970, “
Lift-Oscillator Model of Vortex-Induced Vibration
,”
J. Engrg. Mech. Div.
0044-7951,
96
, pp.
577
591
.
9.
Currie
,
I.
, and
Turnball
,
D.
, 1987, “
Streamwise Oscillations of Cylinders Near the Critical Reynolds Number
,”
J. Fluids Struct.
0889-9746,
1
(
2
), pp.
185
196
.
10.
Skop
,
R.
, and
Griffin
,
O.
, 1973, “
A Model for the Vortex-Excited Resonant Response of Bluff Cylinders
,”
J. Sound Vib.
0022-460X,
27
(
2
), pp.
225
233
.
11.
Iwan
,
W.
, and
Blevins
,
R.
, 1974, “
A Model for Vortex-Induced Oscillation of Structures
,”
ASME J. Appl. Mech.
0021-8936,
41
(
3
), pp.
581
586
.
12.
Landl
,
R.
, 1975, “
A Mathematical Model for Vortex-Excited Vibration of Cable Suspensions
,”
J. Sound Vib.
0022-460X,
42
(
2
), pp.
219
234
.
13.
Evangelinos
,
C.
,
Lucor
,
D.
, and
Karniadakis
,
G. E.
, 2000, “
DNS-Derived Force Distribution on Flexible Cylinders Subject to Vortex-Induced Vibrations
,”
J. Fluids Struct.
0889-9746,
14
, pp.
429
440
.
14.
Skop
,
R. A.
, and
Balasubramanian
,
S.
, 1997, “
A New Twist on an Old Model for Vortex-Excited Vibrations
,”
J. Fluids Struct.
0889-9746,
11
(
4
), pp.
395
412
.
15.
Norberg
,
C.
, 2003, “
Fluctuating Lift on a Cylinder: Review and New Measurements
,”
J. Fluids Struct.
0889-9746,
17
, pp.
57
96
.
16.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
, 2004, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
413
455
.
17.
Gabbai
,
R. D.
, and
Benaroya
,
H.
, 2005, “
An Overview of Modeling and Experiments of Vortex-Induced Vibration of Circular Cylinder
,”
J. Sound Vib.
0022-460X,
282
, pp.
575
616
.
18.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes
,”
J. Comput. Phys.
0021-9991,
59
, pp.
308
323
.
19.
Zang
,
Y.
,
Street
,
R.
, and
Koseff
,
J.
, 1994, “
A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
0021-9991,
114
, pp.
18
33
.
20.
Akhtar
,
I.
, 2008, “
Parallel Simulations, Reduced-Order Modeling, and Feedback Control of Vortex Shedding Using Fluidic Actuators
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
21.
Akhtar
,
I.
,
Nayfeh
,
A. H.
, and
Ribbens
,
C. J.
, 2009, “
On the Stability and Extension of Reduced-Order Galerkin Models in Incompressible Flows: A Numerical Study of Vortex Shedding
,”
Theor. Comput. Fluid Dyn.
0935-4964,
23
(
3
), pp.
213
237
.
22.
Mittal
,
R.
, and
Balachandar
,
S.
, 1995, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
1070-6631,
7
(
8
), pp.
1841
1865
.
23.
Marzouk
,
O. A.
,
Nayfeh
,
A. H.
,
Arafat
,
H. N.
, and
Akhtar
,
I.
, 2007, “
Modeling Steadystate and Transient Forces on a Cylinder
,”
J. Vib. Control
1077-5463,
13
(
7
), pp.
1065
1091
.
24.
Nayfeh
,
A. H.
,
Owis
,
F.
, and
Hajj
,
M. R.
, 2003, “
A Model for the Coupled Lift and Drag on a Circular Cylinder
,” ASME Paper No. DETC2003-VIB48455.
25.
Nayfeh
,
A. H.
,
Marzouk
,
O. A.
,
Haider
,
H. N.
, and
Akhtar
,
I.
, 2005, “
Modeling the Transient and Steady-State Flow Over a Stationary Cylinder
,” ASME Paper No. DETC2005-86376.
26.
Qin
,
L.
, 2004, “
Development of Reduced-Order Models for Lift and Drag on Oscillating Cylinders With Higher-Order Spectral Moments
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
You do not currently have access to this content.