Numerical simulations of the flow past elliptic cylinders with different eccentricities have been performed using a parallel incompressible computational fluid-dynamics (CFD) solver. The pressure is integrated over the surface to compute the lift and drag forces on the cylinders. The numerical results of different cases are then used to develop reduced-order models for the lift and drag coefficients. The lift coefficient is modeled with a generalized van der Pol–Duffing oscillator and the drag coefficient is expressed in terms of the lift coefficient. The parameters in the oscillator model are computed for each elliptic cylinder. The results of the model match the CFD results not only in the time domain but also in the spectral domain.
Issue Section:
Research Papers
1.
Roshko
, A.
, 1955, “On the Wake and Drag Of Bluff Bodies
,” J. Aero. Sci.
0095-9812, 22
(2
), pp. 124
–132
.2.
Bishop
, R.
, and Hassan
, A.
, 1964, “The Lift and Drag Forces on a Circular Cylinder in Flowing Fluid
,” Proc. R. Soc. London, Ser. A
1364-5021, 277
, pp. 32
–50
.3.
Karniadakis
, G. E.
, and Triantafyllou
, G. S.
, 1992, “Three-Dimensional Dynamics and Transition to Turbulence in the Wake of Bluff Objects
,” J. Fluid Mech.
0022-1120, 238
, pp. 1
–30
.4.
Roshko
, A.
, 1954, “On the Development of Turbulent Wakes From Vortex Streets
,” NACA Report No. 1191.5.
Tomboulides
, A. G.
, Israeli
, M.
, and Karniadakis
, G. E.
, 1989, “Efficient Removal of Boundary Divergence Errors in Time-Splitting Methods
,” J. Sci. Comput.
0885-7474, 4
(3
), pp. 291
–308
.6.
Williamson
, C. H. K.
, 1996, “Vortex Dynamics in the Cylinder Wake
,” Annu. Rev. Fluid Mech.
0066-4189, 28
, pp. 477
–539
.7.
Wu
, J.
, Sheridan
, J.
, and Welsh
, M. C.
, 1994, “An Experimental Investigation of the Streamwise Vortices in the Wake of a Bluff Body
,” J. Fluids Struct.
0889-9746, 8
, pp. 621
–635
.8.
Hartlen
, R.
, and Currie
, I.
, 1970, “Lift-Oscillator Model of Vortex-Induced Vibration
,” J. Engrg. Mech. Div.
0044-7951, 96
, pp. 577
–591
.9.
Currie
, I.
, and Turnball
, D.
, 1987, “Streamwise Oscillations of Cylinders Near the Critical Reynolds Number
,” J. Fluids Struct.
0889-9746, 1
(2
), pp. 185
–196
.10.
Skop
, R.
, and Griffin
, O.
, 1973, “A Model for the Vortex-Excited Resonant Response of Bluff Cylinders
,” J. Sound Vib.
0022-460X, 27
(2
), pp. 225
–233
.11.
Iwan
, W.
, and Blevins
, R.
, 1974, “A Model for Vortex-Induced Oscillation of Structures
,” ASME J. Appl. Mech.
0021-8936, 41
(3
), pp. 581
–586
.12.
Landl
, R.
, 1975, “A Mathematical Model for Vortex-Excited Vibration of Cable Suspensions
,” J. Sound Vib.
0022-460X, 42
(2
), pp. 219
–234
.13.
Evangelinos
, C.
, Lucor
, D.
, and Karniadakis
, G. E.
, 2000, “DNS-Derived Force Distribution on Flexible Cylinders Subject to Vortex-Induced Vibrations
,” J. Fluids Struct.
0889-9746, 14
, pp. 429
–440
.14.
Skop
, R. A.
, and Balasubramanian
, S.
, 1997, “A New Twist on an Old Model for Vortex-Excited Vibrations
,” J. Fluids Struct.
0889-9746, 11
(4
), pp. 395
–412
.15.
Norberg
, C.
, 2003, “Fluctuating Lift on a Cylinder: Review and New Measurements
,” J. Fluids Struct.
0889-9746, 17
, pp. 57
–96
.16.
Williamson
, C. H. K.
, and Govardhan
, R.
, 2004, “Vortex-Induced Vibrations
,” Annu. Rev. Fluid Mech.
0066-4189, 36
, pp. 413
–455
.17.
Gabbai
, R. D.
, and Benaroya
, H.
, 2005, “An Overview of Modeling and Experiments of Vortex-Induced Vibration of Circular Cylinder
,” J. Sound Vib.
0022-460X, 282
, pp. 575
–616
.18.
Kim
, J.
, and Moin
, P.
, 1985, “Application of a Fractional-Step Method to Incompressible Navier-Stokes
,” J. Comput. Phys.
0021-9991, 59
, pp. 308
–323
.19.
Zang
, Y.
, Street
, R.
, and Koseff
, J.
, 1994, “A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,” J. Comput. Phys.
0021-9991, 114
, pp. 18
–33
.20.
Akhtar
, I.
, 2008, “Parallel Simulations, Reduced-Order Modeling, and Feedback Control of Vortex Shedding Using Fluidic Actuators
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.21.
Akhtar
, I.
, Nayfeh
, A. H.
, and Ribbens
, C. J.
, 2009, “On the Stability and Extension of Reduced-Order Galerkin Models in Incompressible Flows: A Numerical Study of Vortex Shedding
,” Theor. Comput. Fluid Dyn.
0935-4964, 23
(3
), pp. 213
–237
.22.
Mittal
, R.
, and Balachandar
, S.
, 1995, “Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,” Phys. Fluids
1070-6631, 7
(8
), pp. 1841
–1865
.23.
Marzouk
, O. A.
, Nayfeh
, A. H.
, Arafat
, H. N.
, and Akhtar
, I.
, 2007, “Modeling Steadystate and Transient Forces on a Cylinder
,” J. Vib. Control
1077-5463, 13
(7
), pp. 1065
–1091
.24.
Nayfeh
, A. H.
, Owis
, F.
, and Hajj
, M. R.
, 2003, “A Model for the Coupled Lift and Drag on a Circular Cylinder
,” ASME Paper No. DETC2003-VIB48455.25.
Nayfeh
, A. H.
, Marzouk
, O. A.
, Haider
, H. N.
, and Akhtar
, I.
, 2005, “Modeling the Transient and Steady-State Flow Over a Stationary Cylinder
,” ASME Paper No. DETC2005-86376.26.
Qin
, L.
, 2004, “Development of Reduced-Order Models for Lift and Drag on Oscillating Cylinders With Higher-Order Spectral Moments
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.