This paper presents the application of the discontinuity-mapping technique to the analysis of discontinuity-induced bifurcations of periodic trajectories in an example hybrid dynamical system in which changes in the vector field associated with the crossing of a discontinuity-surface depend on the direction of crossing. The analysis is motivated by a hysteretic model of the capillary force interactions between an atomic-force-microscope cantilever probe tip and a nanoscale sample surface in the presence of a thin liquid film on the tip and the surface and operating in intermittent-contact mode. The analysis predicts the sudden termination of branches of periodic system responses at parameter values corresponding to grazing contact with the onset of the hysteretic force interactions. It further establishes the increase beyond all bounds of the magnitude of one of the eigenvalues of the linearization of a suitably defined Poincaré mapping, indicating the destabilizing influence of near-grazing contact.

1.
di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champneys
,
A. R.
, 2001, “
Normal Form Maps for Grazing Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Physica D
0167-2789,
160
(
3–4
), pp.
222
254
.
2.
Nordmark
,
A. B.
, 1997, “
Universal Limit Mapping in Grazing Bifurcations
,”
Phys. Rev. E
1063-651X,
55
(
1
), pp.
266
270
.
3.
di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
, 2008,
Piecewise-Smooth Dynamical Systems: Theory and Applications
,
Springer-Verlag
,
New York
.
4.
Fredriksson
,
M. H.
, and
Nordmark
,
A. B.
, 1961, “
Bifurcations Caused by Grazing Incidence in Many Degrees of Freedom Impact Oscillators
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
1261
1276
.
5.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
, 2000, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Physica D
0167-2789,
136
(
3–4
), pp.
280
302
.
6.
Lee
,
S. I.
,
Howell
,
S. W.
,
Raman
,
A.
, and
Reifenberger
,
R.
, 2002, “
Nonlinear Dynamics of Microcantilevers in Tapping Mode Atomic Force Microscopy: A Comparison Between Theory and Experiment
,”
Phys. Rev. B
0163-1829,
66
(
11
), p.
115409
.
7.
Lee
,
S. I.
,
Howell
,
S. W.
,
Raman
,
A.
, and
Reifenberger
,
R.
, 2003, “
Nonlinear Dynamic Perspectives on Dynamic Force Microscopy
,”
Ultramicroscopy
0304-3991,
97
(
1–4
), pp.
185
198
.
8.
Beaglehole
,
D.
, and
Christenson
,
H. K.
, 1992, “
Vapor Adsorption on Mica and Silicon: Entropy Effects, Layering, and Surface Forces
,”
J. Phys. Chem.
0022-3654,
96
(
8
), pp.
3395
3403
.
9.
Jang
,
J.
,
Schatz
,
G. C.
, and
Ratner
,
M. A.
, 2004, “
Capillary Force in Atomic Force Microscopy
,”
J. Chem. Phys.
0021-9606,
120
(
3
), pp.
1157
1160
.
10.
Garcia-Martin
,
A.
, and
Garcia
,
R.
, 2006, “
Formation of Nanoscale Liquid Menisci in Electric Fields
,”
Appl. Phys. Lett.
0003-6951,
88
(
12
), p.
123115
.
11.
Zitzler
,
L.
,
Herminghaus
,
S.
, and
Mugele
,
F.
, 2002, “
Capillary Force in Tapping Mode Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
66
(
15
), p.
155436
.
12.
Garcia
,
R.
, and
San Paulo
,
A.
, 1999, “
Attractive and Repulsive Tip-Sample Interaction Regimes in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
60
(
7
), pp.
4961
4967
.
13.
Garcia
,
R.
, and
Perez
,
R.
, 2002, “
Dynamic atomic force microscopy method
,”
Surf. Sci. Rep.
0167-5729,
47
(
6–8
), pp.
197
301
.
14.
Yagasaki
,
K.
, 2004, “
Nonlinear Dynamics of Vibrating Microcantilevers in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
70
(
24
), p.
245419
.
15.
Hashemi
,
N.
,
Dankowicz
,
H.
, and
Paul
,
M. R.
, 2008, “
The Nonlinear Dynamics of Tapping Mode Atomic Force Microscopy With Capillary Force Interaction
,”
J. Appl. Phys.
0021-8979,
103
(
9
), p.
093512
.
16.
Dankowicz
,
H.
, 2006, “
Nonlinear Dynamics as an Essential Tool for Non-Destructive Characterization of Soft Nanostructures Using Tapping-Mode Atomic Force Microscopy
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
364
, pp.
3505
3520
.
17.
Misra
,
S.
,
Dankowicz
,
H.
, and
Paul
,
M. R.
, 2008, “
Event-Driven Feedback Tracking and Control of Tapping-Mode Atomic Force Microscopy
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
464
(
2096
), pp.
2113
2133
.
18.
Dankowicz
,
H.
,
Zhao
,
X.
, and
Misra
,
S.
, 2007, “
Near-Grazing Dynamics in Tapping-Mode Atomic Force Microscopy
,”
Int. J. Non-Linear Mech.
0020-7462,
42
(
4
), pp.
697
709
.
19.
Zhao
,
X.
, and
Dankowicz
,
H.
, 2006, “
Characterization of Intermittent Contact in Tapping Mode Atomic Force Microscopy
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
2
), pp.
109
115
.
20.
Thota
,
P.
,
MacLaren
,
S.
, and
Dankowicz
,
H.
, 2007, “
Controlling Bistability in Tapping-Mode AFM Using Dual Frequency Excitation
,”
Appl. Phys. Lett.
0003-6951,
91
(
9
), p.
093108
.
21.
Hashemi
,
N.
,
Paul
,
M.
, and
Dankowicz
,
H.
, 2007, “
Exploring the Basins of Attraction of Tapping-Mode Atomic Force Microscopy With Capillary Force Interactions
,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA, Paper No. 062807.
22.
Hashemi
,
N.
,
Paul
,
M. R.
,
Dankowicz
,
H.
,
Lee
,
M.
, and
Jhe
,
W.
, 2008, “
The Dissipated Power in Atomic Force Microscopy Due to Interactions With a Capillary Fluid Layer
,”
J. Appl. Phys.
0021-8979,
104
(
6
), p.
063518
.
You do not currently have access to this content.