Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted.

1.
Radjai
,
F.
,
Jean
,
M.
,
Moreau
,
J. -J.
, and
Roux
,
S.
, 1996, “
Force Distributions in Dense Two-Dimensional Granular Systems
,”
Phys. Rev. Lett.
0031-9007,
77
(
2
), pp.
274
277
.
2.
Choi
,
J.
,
Kudrolli
,
A.
, and
Bazant
,
M. Z.
, 2005, “
Velocity Profile of Granular Flows in Silos and Hoppers
,”
J. Phys.: Condens. Matter
0953-8984,
17
, pp.
S2533
S2548
.
3.
Kamrin
,
K.
, and
Bazant
,
M. Z.
, 2007, “
Stochastic Flow Rule for Granular Materials
,”
Phys. Rev. E
1063-651X,
75
, p.
041301
.
4.
Kamrin
,
K.
,
Rycroft
,
C. H.
, and
Bazant
,
M. Z.
, 2007, “
The Stochastic Flow Rule: A Multi-Scale Model for Granular Plasticity
,”
Model. Simul. Mater. Sci. Eng.
,
15
, pp.
S449
S464
.
5.
Cundall
,
P.
, and
Strack
,
O.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
(
1
), pp.
47
65
.
6.
Hirshfeld
,
D.
, and
Rapaporta
,
D.
, 2001, “
Granular Flow From a Silo: Discrete-Particle Simulations in Three Dimensions
,”
Eur. Phys. J. E
1292-8941,
4
, pp.
193
199
.
7.
Rycroft
,
C. H.
,
Grest
,
G. S.
,
Landry
,
J. W.
, and
Bazant
,
M. Z.
, 2006, “
Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor
,”
Phys. Rev. E
1063-651X,
74
, p.
021306
.
8.
Madsen
,
J.
,
Pechdimaljian
,
N.
, and
Negrut
,
D.
, 2007, “
Penalty Versus Complementarity-Based Frictional Contact of Rigid Bodies: A CPU Time Comparison
,” Technical Report No. TR-2007-05, Simulation-Based Engineering Lab, University of Wisconsin, Madison.
9.
Pang
,
J. -S.
, and
Stewart
,
D.
, 2008, “
Differential Variational Inequalities
,”
Math. Program.
0025-5610,
113
(
2
), pp.
345
424
.
10.
Moreau
,
J. J.
, 1988, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Nonsmooth Mechanics and Applications
,
J. J.
Moreau
and
P. D.
Panagiotopoulos
, eds.,
Springer-Verlag
,
Berlin
, pp.
1
82
.
11.
Moreau
,
J. J.
, and
Jean
,
M.
, 1996, “
Numerical Treatment of Contact and Friction: The Contact Dynamics Method
,”
Proceedings of the Third Biennial Joint Conference on Engineering Systems and Analysis
, Montpellier, France, pp.
201
208
.
12.
Jourdan
,
F.
,
Alart
,
P.
, and
Jean
,
M.
, 1998, “
A Gauss Seidel Like Algorithm to Solve Frictional Contract Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
155
, pp.
31
47
.
13.
Cottle
,
R. W.
,
Pang
,
J. -S.
, and
Stone
,
R. E.
, 1992,
The Linear Complementarity Problem
,
Academic
,
New York
.
14.
Murty
,
K. G.
, 1988,
Linear Complementarity, Linear and Nonlinear Programming
,
Helderman Verlag
,
Berlin
.
15.
Tasora
,
A.
, and
Anitescu
,
M.
, 2007, “
A Fast Contraction Mapping for Solving Multibody Systems
,”
PAMM
,
7
, p.
1062401
.
16.
Anitescu
,
M.
, and
Tasora
,
A.
, 2008, “
An Iterative Approach for Cone Complementarity Problems for Nonsmooth Dynamics
,”
Comput. Optim. Appl.
0926-6003 in press.
17.
Mangasarian
,
O.
, 1977, “
Solution of Symmetric Linear Complementarity Problems by Iterative Methods
,”
J. Optim. Theory Appl.
0022-3239,
22
(
4
), pp.
465
485
.
18.
Anitescu
,
M.
, 2006, “
Optimization-Based Simulation of Nonsmooth Rigid Multibody Dynamics
,”
Math. Program.
0025-5610,
105
(
1
), pp.
113
143
.
19.
Stewart
,
D.
, 1997, “
Existence of Solutions to Rigid Body Dynamics and the Painlevé Paradoxes
,”
C. R. Acad. Sci. Paris
,
325
(
6
), pp.
689
693
.
20.
Anitescu
,
M.
, and
Hart
,
G. D.
, 2004, “
A Constraint-Stabilized Time-Stepping Approach for Rigid Multibody Dynamics With Joints, Contact and Friction
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
(
14
), pp.
2335
2371
.
21.
Savage
,
S. B.
, 1979, “
Gravity Flow of Cohesionless Granular Materials in Chutes and Channels
,”
J. Fluid Mech.
0022-1120,
92
(
01
), pp.
53
96
.
22.
Kadak
,
A.
, and
Bazant
,
Z.
, 2004, “
Pebble Flow Experiments for Pebble Bed Reactors
,”
Proceedings of Second International Topical Meeting on High Temperature Reactor Technology
, Beijing, China.
23.
Schultz
,
R. R.
,
Ougouag
,
A. M.
,
Nigg
,
D. W.
,
Gougar
,
H. D.
,
Johnson
,
R. W.
,
Terry
,
W. K.
,
Oh
,
C. H.
,
McEligot
,
D. W.
,
Johnsen
,
G. W.
,
McCreery
,
G. E.
,
Yoon
,
W. Y.
,
Sterbentz
,
J. W.
,
Herring
,
J. S.
,
Taiwo
,
T. A.
,
Wei
,
T. Y. C.
,
Pointer
,
W. D.
,
Yang
,
W. S.
, and
Farmer
,
M. T.
, 2007, “
Next Generation Nuclear Plant Methods Technical Program Plan
,” Technical Report No. INL/EXT-06-11804, Idaho National Laboratory.
24.
Rothwell
,
G.
, and
Rust
,
J.
, 1997, “
On the Optimal Lifetime of Nuclear Power Plants
,”
J. Bus. Econ. Stat.
0735-0015,
15
, pp.
195
208
.
25.
Gougar
,
H. D.
, 2004, “
Advanced Core Design and Fuel Management for Pebble-Bed Reactors
,” Ph.D. thesis, Department of Nuclear Engineering, Penn State University, PA.
26.
Ougouag
,
A.
,
Ortensi
,
J.
, and
Hiruta
,
H.
, 2009, “
Analysis of an Earthquake-Initiated Transient in a PBR
,” Technical Report No. INL/CON-08-14876, Idaho National Laboratory (INL).
27.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
, 3rd ed.,
Cambridge University Press
,
Cambridge, England
.
28.
Stewart
,
D. E.
, and
Trinkle
,
J. C.
, 1996, “
An Implicit Time-Stepping Scheme for Rigid-Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
2673
2691
.
29.
Bertsekas
,
D. P.
, 1995,
Nonlinear Programming
,
Athena Scientific
,
Belmont, MA
.
30.
Baraff
,
D.
, 1993, “
Issues in Computing Contact Forces for Non-Penetrating Rigid Bodies
,”
Algorithmica
0178-4617,
10
, pp.
292
352
.
31.
Stewart
,
D. E.
, 1998, “
Convergence of a Time-Stepping Scheme for Rigid Body Dynamics and Resolution of Painleve’s Problems
,”
Arch. Ration. Mech. Anal.
0003-9527,
145
(
3
), pp.
215
260
.
32.
Stewart
,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
0036-1445,
42
(
1
), pp.
3
39
.
33.
Tasora
,
A.
, 2007, “
High Performance Complementarity Solver for Non-Smooth Dynamics
,”
Proceedings of the ECCOMAS Multibody Dynamics Conference
,
C. L.
Bottasso
,
P.
Masarati
, and
L.
Trainelli
, eds., Milan, Italy.
34.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
, 2004,
Geometric Numerical Integration
,
Springer
,
Berlin
.
35.
Anitescu
,
M.
, and
Potra
,
F. A.
, 1997, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
0924-090X,
14
, pp.
231
247
.
36.
Anitescu
,
M.
, and
Hart
,
G. D.
, 2004, “
A Fixed-Point Iteration Approach for Multibody Dynamics With Contact and Friction
,”
Math. Program. Ser. B
0025-5610,
101
(
1
), pp.
3
32
.
37.
Tasora
,
A.
,
Negrut
,
D.
, and
Anitescu
,
M.
, 2008, “
Large-Scale Parallel Multi-Body Dynamics With Frictional Contact on the Graphical Processing Unit
,”
Multibody Syst. Dyn.
1384-5640,
222
(
4
), pp.
315
326
.
39.
Gilbert
,
E. G.
,
Johnson
,
D. W.
, and
Keerthi
,
S. S.
, 1988, “
A Fast Procedure for Computing the Distance Between Complex Objects in Three-Dimensional Space
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
2
), pp.
193
203
.
40.
Schulze
,
D.
, 2007,
Powders and Bulk Solids
,
Springer
,
Berlin
.
41.
Sykut
,
J.
,
Molenda
,
M.
, and
Horabik
,
J.
, 2008, “
DEM Simulation of the Packing Structure and Wall Load in a 2-Dimensional Silo
,”
Granular Matter
1434-5021,
10
, pp.
273
278
.
You do not currently have access to this content.