Fractional calculus should be applied to various dynamical systems in order to be validated in practice. On this line of taught, the fractional extension of the classical dynamics is introduced. The fractional Hamiltonian on the extended phase space is analyzed and the corresponding generalized Poisson’s brackets are constructed.
Issue Section:
Research Papers
1.
Oldham
, K. B.
, and Spanier
, J.
, 1974, The Fractional Calculus
, Academic
, New York
.2.
Miller
, K. S.
, and Ross
, B.
, 1993, An Introduction to the Fractional Integrals and Derivatives—Theory and Application
, Wiley
, New York
.3.
Hilfer
, R.
, 2000, Application of Fractional Calculus in Physics
, World Scientific
, Singapore
.4.
Zaslavsky
, G. M.
, 2005, Hamiltonian Chaos and Fractional Dynamics
, Oxford University Press
, Oxford
.5.
Samko
, S. G.
, Kilbas
, A. A.
, and Marichev
, O. I.
, 1993. Fractional Integrals and Derivatives—Theory and Applications
, Gordon and Breach
, Linghorne, PA
.6.
Podlubny
, I.
, 1999, Fractional Differential Equations
, Academic
, San Diego, CA
.7.
Kilbas
, A. A.
, Srivastava
, H. H.
, and Trujillo
, J. J.
, 2006, Theory and Applications of Fractional Differential Equations
, Elsevier
, Amsterdam
.8.
Magin
, R. L.
, 2006, Fractional Calculus in Bioengineering
, Begell
, Connecticut
.9.
West
, B. J.
, Bologna
, M.
, and Grigolini
, P.
, 2003, Physics of Fractal Operators
, Springer
, New York
.10.
Heymans
, N.
, and Podlubny
, I.
, 2006, “Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann–Liouville Fractional Derivatives
,” Rheol. Acta
0035-4511, 45
, pp. 765
–771
.11.
Jesus
, I. S.
, and Machado
, J. A. T.
, 2008, “Fractional Control of Heat Diffusion Systems
,” Nonlinear Dyn.
0924-090X, 54
(3
), pp. 263
–282
.12.
Machado
, J. A. T.
, and Galhano
, M. S. A.
, 2008, “Statistical Fractional Dynamics
,” ASME J. Comput. Nonlinear Dyn.
1555-1423, 3
(2
), p. 021201
.13.
Mainardi
, F.
, Luchko
, Y.
, and Pagnini
, G.
, 2001, “The Fundamental Solution of the Space-Time Fractional Diffusion Equation
,” Fractional Calculus Appl. Anal.
1311-0454, 4
(2
), pp. 153
–192
.14.
Scalas
, E.
, Gorenflo
, R.
, and Mainardi
, F.
, 2004, “Uncoupled Continuous-Time Random Walks: Solution and Limiting Behavior of the Master Equation
,” Phys. Rev. E
1063-651X, 69
, p. 011107
.15.
Agrawal
, O. P.
, 2002, “Formulation of Euler–Lagrange Equations for Fractional Variational Problems
,” J. Math. Anal. Appl.
0022-247X, 272
, pp. 368
–379
.16.
Chen
, Y. Q.
, Vinagre
, B. M.
, and Podlubny
, I.
, 2004, “Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—An Expository Review
,” Nonlinear Dyn.
0924-090X, 38
(1–4
), pp. 155
–170
.17.
Tarasov
, V. E.
, Zaslavsky
, G. M.
, 2006, “Nonholonomic Constraints With Fractional Derivatives
,” J. Phys. A
0305-4470, 39
(31
), pp. 9797
–9815
.18.
Korabel
, N.
, Zaslavsky
, G. M.
, and Tarasov
, V. E.
, 2007, “Coupled Oscillators With Power-Law Interaction and Their Fractional Dynamics Analogues
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
(8
), pp. 1405
–1417
.19.
Agrawal
, O. P.
, and Baleanu
, D. A.
, 2007, “Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems
,” J. Vib. Control
1077-5463, 13
(9–10
), pp. 1269
–1281
.20.
Baleanu
, D.
, 2008, “Fractional Constrained Systems and Caputo Derivatives
,” ASME J. Comput. Nonlinear Dyn.
1555-1423, 3
(2
), p. 021102
.21.
Momani
, S.
, 2006, “A Numerical Scheme for the Solution of Multi-Order Fractional Differential Equations
,” Appl. Math. Comput.
0096-3003, 182
, pp. 761
–770
.22.
Kolwankar
, K. M.
, and Gangal
, A. D.
, 1998, “Local Fractional Fokker–Planck Equation
,” Phys. Rev. Lett.
0031-9007, 80
, pp. 214
–217
.23.
Engheta
, N.
, 1996, “Electrostaic Fractional Image Methods for Perfectly Conducting Wedges and Cones
,” IEEE Trans. Antennas Propag.
0018-926X, 44
, pp. 1565
–1574
.24.
Tarasov
, V. E.
, 2008, “Fractional Vector Calculus and Fractional Maxwell’s Equations
,” Ann. Phys.
0003-3804, 323
(11
), pp. 2756
–2778
.25.
Baleanu
, D.
, Golmankhaneh
, A. K.
, and Golmankhaneh
, A. K.
, 2008, “Fractional Nambu Mechanics
,” Int. J. Theor. Phys.
0020-7748, 48
(4
), pp. 1044
–1052
.26.
Solomon
, T. H.
, Weeks
, E. R.
, and Swinney
, H. L.
, 1993, “Observation of Anomalous Diffusion and Levy Flights in a Two-Dimensional Rotating Flow
,” Phys. Rev. Lett.
0031-9007, 71
(24
), pp. 3975
–3978
.27.
Fogleman
, M. A.
, Fawcett
, M. J.
, and Solomon
, T. H.
, 2001, “Lagrangian Chaos and Correlated Lévy Flights in a Non-Beltrami Flow: Transient Versus Long-Term Transport
,” Phys. Rev. E
1063-651X, 63
, p. 020101
.28.
Riewe
, F.
, 1996, “Nonconservative Lagrangian and Hamiltonian Mechanics
,” Phys. Rev. E
1063-651X, 53
, pp. 1890
–1899
.29.
Riewe
, F.
, 1997, “Mechanics With Fractional Derivatives
,” Phys. Rev. E
1063-651X, 55
, pp. 3581
–3592
.30.
Klimek
, M.
, 2001, “Fractional Sequential Mechanics—Models With Symmetric Fractional Derivative
,” Czech. J. Phys.
0011-4626, 51
, pp. 1348
–1354
.31.
Klimek
, M.
, 2002, “Lagrangean and Hamiltonian Fractional Sequential Mechanics
,” Czech. J. Phys.
0011-4626, 52
, pp. 1247
–1253
.32.
Agrawal
, O. P.
, 2007, “Fractional Variational Calculus and the Transversality Conditions
,” J. Phys. A: Math. Theor.
1751-8113, 39
, pp. 10375
–10384
.33.
Agrawal
, O. P.
, 2007, “Generalized Euler–Lagrange Equations and Transversality Conditions for FVPs in Terms of the Caputo Derivative
,” J. Vib. Control
1077-5463, 13
(9–10
), pp. 1217
–1237
.34.
Baleanu
, D.
, and Agrawal
, O. P.
, 2006, “Fractional Hamilton Formalism Within Caputo Derivative
,” Czech. J. Phys.
0011-4626, 56
, pp. 1087
–1092
.35.
Rabei
, E. M.
, Nawafleh
, K. I.
, Hijjawi
, R. S.
, Muslih
, S. I.
, and Baleanu
, D.
, 2007, “The Hamilton Formalism With Fractional Derivatives
,” J. Math. Anal. Appl.
0022-247X, 327
, pp. 891
–897
.36.
Baleanu
, D.
, and Muslih
, S. I.
, 2005, “Lagrangian Formulation of Classical Fields Within Riemann–Liouville Fractional Derivatives
,” Phys. Scr.
0031-8949, 72
(2–3
), pp. 119
–121
.37.
Muslih
, S. I.
, and Baleanu
, D.
, 2005, “Hamiltonian Formulation of Systems With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,” J. Math. Anal. Appl.
0022-247X, 304
(2
), pp. 599
–606
.38.
Baleanu
, D.
, and Avkar
, T.
, 2004, “Lgrangians With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,” Nuovo Cimento B
0369-3554, 119
, pp. 73
–79
.39.
Baleanu
, D.
, Maraaba
, T.
, and Jarad
, F.
, 2008, “Fractional Principles With Delay
,” J. Phys. A: Math. Theor.
1751-8113, 41
(31
), p. 315403
.40.
Baleanu
, D.
, Muslih
, S. I.
, Rabei
, E.
, Golmankhaneh
, A. K.
, and Golmankhaneh
, A. K.
, 2009, “Fractional Mechanics on the Extended Phase Space
,” Paper No. DETC2009-86586.41.
Nasiri
, S. Y.
, Sobouti
, Y.
, and Taati
, F.
, 2006, “Phase Space Quantum Mechanics-Direct
,” J. Math. Phys.
0022-2488, 47
, p. 092106
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.