Skip Nav Destination
Issues
January 2008
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Efficient and Robust Approaches to the Stability Analysis of Large Multibody Systems
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011001.
doi: https://doi.org/10.1115/1.2397690
Topics:
Stability
,
Signals
,
Damping
,
Eigenvalues
An Analytical Solution for Shear Stress Distributions During Oblique Elastic Impact of Similar Spheres
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011002.
doi: https://doi.org/10.1115/1.2802112
Topics:
Friction
,
Shear stress
,
Displacement
Resolving the Sequence-Dependent Stiffness of DNA Using Cyclization Experiments and a Computational Rod Model
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011003.
doi: https://doi.org/10.1115/1.2802582
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011004.
doi: https://doi.org/10.1115/1.2803257
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011005.
doi: https://doi.org/10.1115/1.2803258
Implementation of Periodicity Ratio in Analyzing Nonlinear Dynamic Systems: A Comparison With Lyapunov Exponent
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011006.
doi: https://doi.org/10.1115/1.2802581
Translational Joints With Clearance in Rigid Multibody Systems
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011007.
doi: https://doi.org/10.1115/1.2802113
A Spectral Method for Describing the Response of a Parametrically Excited System Under External Random Excitation
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011008.
doi: https://doi.org/10.1115/1.2815333
Topics:
Excitation
,
Fourier transforms
,
Random excitation
,
Simulation
,
Spectral energy distribution
,
Computation
,
Impulse (Physics)
,
Density
,
Stiffness
Introduction of the Foot Placement Estimator: A Dynamic Measure of Balance for Bipedal Robotics
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011009.
doi: https://doi.org/10.1115/1.2815334
Topics:
Control equipment
,
Control systems
,
Cycles
,
Friction
,
Machinery
,
Robotics
,
Robots
,
Simulation
,
Stability
,
Simulation results
Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011010.
doi: https://doi.org/10.1115/1.2815335
Topics:
Algorithms
,
Dynamic systems
,
Optimization
,
Parameter estimation
,
Pendulums
,
Algebra
A Modular Modeling Approach to Simulate Interactively Multibody Systems With a Baumgarte/Uzawa Formulation
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011011.
doi: https://doi.org/10.1115/1.2815331
Topics:
Errors
,
Modeling
,
Multibody systems
,
Simulation
,
Pendulums
,
Stability
On Nonlinear Dynamics and an Optimal Control Design to a Longitudinal Flight
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011012.
doi: https://doi.org/10.1115/1.2802111
Topics:
Aircraft
,
Bifurcation
,
Design
,
Equilibrium (Physics)
,
Flight
,
Nonlinear dynamics
,
Optimal control
,
Equations of motion
Stability Analysis of an Articulated Loading Platform in Regular Sea
J. Comput. Nonlinear Dynam. January 2008, 3(1): 011013.
doi: https://doi.org/10.1115/1.2815332
Topics:
Damping
,
Drag (Fluid dynamics)
,
Equations of motion
,
Stability
,
Seas
,
Waves
Email alerts
RSS Feeds
Input–Output Finite-Time Bipartite Synchronization for Multiweighted Complex Dynamical Networks Under Dynamic Hybrid Triggering Mechanism
J. Comput. Nonlinear Dynam (November 2024)
A Universal and Efficient Quadrilateral Shell Element Based on Absolute Nodal Coordinate Formulation for Thin Shell Structures With Complex Surfaces
J. Comput. Nonlinear Dynam (November 2024)
Dynamic Simulation and Collision Detection for Flexible Mechanical Systems With Contact Using the Floating Frame of Reference Formulation
J. Comput. Nonlinear Dynam (November 2024)
Design and Analysis of An Automotive Crash Box Using Strut Based Lattice Structures
J. Comput. Nonlinear Dynam
An Efficient Numerical Approach to Solve Fractional Coupled Boussinesq Equations
J. Comput. Nonlinear Dynam