This paper presents the current issues and trends in meshing and geometric processing, core tasks in the preparation stage of computational engineering analyses. In product development, computational simulation of product functionality and manufacturing process have contributed significantly toward improving the quality of a product, shortening the time-to-market and reducing the cost of the product and manufacturing process. The computational simulation can predict various physical behaviors of a target object or system, including its structural, thermal, fluid, dynamic, and electro-magnetic behaviors. In industry, the computer-aided engineering (CAE) software packages have been the driving force behind the ever-increasing usage of computational engineering analyses. While these tools have been improved continuously since their inception in the early 1960s, the demand for more complex computational simulation has grown significantly in recent years, creating some major shortfalls in the capability of current CAE tools. This paper first discusses the current trends of computational engineering analyses and then focuses on two areas of such shortfalls: meshing and geometric processing, critical tasks required in the preparation stage of engineering analyses that use common numerical methods such as the finite element method and the boundary element method.

References

1.
Capitalizing on Complexity: Insights from the IBM 2010 Global Chief Executive Officer Study, 2010, http://www-935.ibm.com/services/us/ceo/ceostudy2010/index.htmlhttp://www-935.ibm.com/services/us/ceo/ceostudy2010/index.html.
2.
Dieter
,
G.
,
Schmidt
,
L.
, 2009,
Engineering Design
,
McGraw-Hill Higher Education
,
Boston, MA
ISBN: 978-0-07-283703-2..
3.
Excerpt from the announcement of the ONR Workshop on Automation of Analysis Model Creation, 2005.
4.
Reddy
,
J. N.
, 2004,
An Introduction to Nonlinear Finite Element Analysis,
Oxford University Press, USA. ISBN 019852529X
5.
Oden
,
J. T.
,
Belytschko
,
T.
,
Fish
,
J.
,
Hughes
,
T. J. R.
,
Johnson
,
C.
,
Keyes
,
D.
,
Laub
,
A.
,
Petzold
,
L.
,
Srolovitz
,
D.
, and
Yip
,
S.
, 2006, “
Simulation-Based Engineering Science: Revolutionizing Engineering Science Through Simulation,” National Science Foundation, May 2006. Report of the NationalScience Foundation Blue Ribbon Panel on Simulation-Based Engineering Science
. http://www.nsf.gov/pubs/reports/sbes_final_report.pdfhttp://www.nsf.gov/pubs/reports/sbes_final_report.pdf
6.
Yamakawa
,
S.
, and
Shimada
,
K.
, 2006, “
Layered Tetrahedral Meshing of Thin-Walled Solids for Plastic Injection Molding FEM
,”
Comput.-Aided Des.
,
38
(
4
), pp.
315
326
.
8.
Gasbarro
,
M. D.
,
Shimada
,
K.
, and
Di Martino
,
E. S.
, 2007, “
Explicit Finite Element Method for In-vivo Mechanics of Abdominal Aortic Aneurysm
,”
Eur. J. Comput. Mech.
,
16
(
3–4
), pp.
337
363
.
10.
Huag
,
E.
,
Scharnhorst
,
T.
,
Dubois
,
P.
, “
FEM Crash, Berechnung eines Fahrzeugfrontalaufpralls
,”
VDI Tagung: Berechnung im Automobilbau
,
613
,
Wuerzburg
, 1986.
13.
Shimada
,
K.
, 1993, “
Physically Based Mesh Generation: Automated Triangulation of Surfaces and Volumes via Bubble Packing
,” Ph.D. thesis, Massachusetts Institute of Technology., Boston, MA.
14.
Shimada
,
K.
, and
Gossard
,
D.
, 1995, “
Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by Sphere Packing
,”
ACM Third Symposium on Solid Modeling and Applications
, pp.
409
419
.
15.
Shimada
,
K.
, and
Gossard
,
D.
, 1998, “
Automatic Triangular Mesh Generation of Trimmed Parametric Surfaces for Finite Element Analysis
,”
Comput. Aided Geom. Des.
,
15
(
3
), pp.
199
222
.
16.
Shimada
,
K.
,
Yamada
,
A.
, and
Itoh
,
T.
, 2000, “
Anisotropic Triangulation of Parametric Surfaces via Close Packing of Ellipsoids
,”
Int. J. Comput. Geom. Appl.
10
(
4
), pp.
301
324
.
17.
Viswanath
,
N.
,
Shimada
,
K.
, and
Itoh
,
T.
, 2000, “
Quadrilateral Meshing with Anisotropy and Directionality Control via Close Packing of Rectangular Cells
,”
The 9th International Meshing Roundtable
, pp.
227
238
.
18.
Borouchaki
,
H.
,
Frey
,
P. J.
, and
George
,
P. L.
, 1996, “
Unstructured Triangular-Quadrilateral Mesh Generation. Application to Surface Meshing
,”
Proceedings of the 5th International Meshing Roundtable
, pp.
229
242
.
19.
Bossen
,
F.
, and
Heckbert
,
P. S.
, 1996, “
A Pliant Method for Anisotropic Mesh Generation
,”
Proc. 5th Int. Meshing Roundtable
, pp.
63
74
.
20.
Shimada
,
K.
, 1995, “
Automatic Anisotropic Meshing via Packing Ellipsoids
,”
Proceedings of the Annual Autumn Meeting of IPSJ
(in Japanese).
21.
Castro-D'iaz
,
M.
,
Hecht
,
J. F.
, and
Mohammadi
,
B.
, 1995, “
New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations
,”
Proceedings of the 4th International Meshing Roundtable
, pp.
73
85
.
22.
Shimada
,
K.
, 2006, “
Current Trends and Issues in Automatic Mesh Generation
,”
Short Course at the 15th International Meshing Roundtable
.
23.
Yamakawa
,
S.
,
Shaw
,
C.
, and
Shimada
,
K.
, 2005, “
Layered Tetrahedral Meshing of Thin-Walled Solids with Element Size Controlled Based on Wall Thickness
,”
ACM Symposium on Solid and Physical Modeling
, pp.
245
255
.
24.
Reddy
,
S.
, 2010, “
Effect of Mesh Directionality and Anisotropy on the Convergence and the Computational Cost of Crash Simulation of Structural Shells
,” M.S. thesis, Carnegie Mellon University, Pittsburgh, PA.
25.
Yamakawa
,
S.
, and
Shimada
,
K.
, 2003, “
Fully-Automated Hex-Dominant Mesh Generation with Directionality Control via Packing Rectangular Solid Cells
,”
International Journal for Numerical Methods in Engineering.
,
57
, pp.
2099
2129
.
26.
Yamakawa
,
S.
, and
Shimada
,
K.
, 2009, “
Converting a Tetrahedral Mesh to a Prism-Tetrahedral Hybrid Mesh for FEM Accuracy and Efficiency
,”
Int. J. Numer. Methods Eng.
,
80
(
1
), pp.
74
102
.
27.
Ciespace Corporation
, 2010, “
An Automated High Aspect Ratio Mesher for Computational Fluid Dynamics
,” STTR Phase I Report No. 09-1 T8.01-9986.
28.
Dheeravongkit
,
A.
and
Shimada
,
K.
, 2007, “
Inverse Adaptation of a Hex-Dominant Mesh for Large Deformation Finite Element Analysis
,”
Comput.-Aided Des.
,
39
(
5
), pp.
427
438
.
29.
Quadros
,
W. R.
, and
Shimada
,
K.
, 2002, “
Hex-Layer: Layered All-Hex Mesh Generation on Thin Section Solids via Chordal Surface Transformation
,”
Proceedings of 11th International Meshing Roundtable
.
30.
Quadros
,
W. R.
, 2008, “
An Approach for Extracting Non-Manifold Mid-surfaces of Thin-wall Solids using Chordal Axis Transform
,”
Eng. Comput.
,
24
, pp.
305
319
.
31.
Sheehy
,
D. J.
,
Armstrong
,
C. G.
,
Robinson
,
D. J.
, 1995, “
Computing the Medial Surface of a Solid from a Domain Delaunay Triangulation
,”
Proceedings of ACM Symposium on Solid Modeling and Applications
, pp.
201
212
.
32.
Ramanathan
,
M.
, and
Gurumoorthy
,
B.
,
Generating the Mid-surface of a Solids Using 2D MAT of its Faces
, 2004,
Comput.-Aided Des. Appl. Int. J.
1
(
1–4
), pp.
665
674
.
33.
Inoue
,
K.
,
Itoh
,
T.
,
Yamada
,
A.
,
Furuhata
,
T.
, and
Shimada
,
K.
, 2001, “
Face Clustering of a Large-Scale CAD Model for Surface Mesh Generation
,”
Comput.-Aided Des.
33
(
3
), pp.
251
261
.
34.
Varedy
,
T.
,
Facello
,
M. A.
, and
Terek
,
Z.
, 2006, “
Automatic Extraction of Surface Structures in Digital Shape Reconstruction
,”
Geom. Model Process.
2006, pp.
1
16
.
35.
Yamakawa
,
S.
and
Shimada
,
K.
, 2005, “
Polygon Crawling: Feature-Edge Extraction from a General Polygonal Surface for Mesh Generation
,”
Proceedings 14th International Meshing Roundtable
.
37.
Shim
,
M.
, Gunay, M., and Shimada, K., 2009, “
Three-Dimensional Shape Reconstruction of Abdominal Aortic Aneurysm
”,
Comput.-Aided Des.
41
(
8
), pp.
555
565
.
38.
Johnson
,
E.
,
Zhang
,
Y.
, and
Shimada
,
K.
, 2010, “
Estimating an Equivalent Wall-Thickness of a Cerebral Aneurysm through Surface Parameterization and a Non-linear Spring System
.”
Int. J. Numer. Methods Biomed. Eng.
39.
Johnson
,
E.
, 2010, “
Improving the Accuracy of Fluid-Structure Interaction Analyses of Patient-Specific Cerebral Aneurysms
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
You do not currently have access to this content.