With the advent of the fourth industrial revolution (Industry 4.0), manufacturing systems are transformed into digital ecosystems. In this transformation, the internet of things (IoT) and other emerging technologies pose a major role. To shift manufacturing companies toward IoT, smart sensor systems are required to connect their resources into the digital world. To address this issue, the proposed work presents a monitoring system for shop-floor control following the IoT paradigm. The proposed monitoring system consists of a data acquisition device (DAQ) capable of capturing quickly and efficiently the data from the machine tools, and transmits these data to a cloud gateway via a wireless sensor topology. The monitored data are transferred to a cloud server for further processing and visualization. The data transmission is performed in two levels, i.e., locally in the shop-floor using a star wireless sensor network (WSN) topology with a microcomputer gateway and from the microcomputer to Cloud using Internet protocols. The developed system follows the loT paradigm in terms of connecting the physical with the cyber world and offering integration capabilities with existing industrial systems. In addition, the open platform communication—unified architecture (OPC-UA) standard is employed to support the connectivity of the proposed monitoring system with other IT tools in an enterprise. The proposed monitoring system is validated in a laboratory as well as in machining and mold-making small and medium-sized enterprises (SMEs).

References

1.
Chryssolouris
,
G.
,
2006
,
Manufacturing Systems: Theory and Practice
, 2nd ed.,
Springer-Verlag
,
New York
.
2.
Mourtzis
,
D.
, and
Doukas
,
M.
,
2014
, “
The Evolution of Manufacturing Systems: From Craftsmanship to the Era of Customization
,”
Handbook of Research on Design and Management of Lean Production Systems
,
V.
Modrák
and
P.
Semančo
, eds.,
IGI Global
,
Hershey, PA
, pp.
1
29
.
3.
Ilsen
,
R.
,
Meissner
,
H.
, and
Aurich
,
J. C.
,
2017
, “
Optimizing Energy Consumption in a Decentralized Manufacturing System
,”
ASME. J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021006
.
4.
Löffler
,
M.
, and
Tschiesner
,
A.
,
2013
, “
Internet of Things and the Future of Manufacturing
,” McKinsey & Company, New York, accessed Sept. 28, 2017, http://www.mckinsey.com/business-functions/business-technology/our-insights/the-internet-of-things-and-the-future-of-manufacturing
5.
Feng
,
S. C.
,
Bernstein
,
W. Z.
,
Hedberg
,
T.
, Jr.
, and
Feeney
,
A. B.
,
2017
, “
Toward Knowledge Management for Smart Manufacturing
,”
ASME. J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031016
.
6.
Bagheri
,
B.
,
Yang
,
S.
,
Kao
,
H. A.
, and
Lee
,
J.
,
2015
, “
Cyber-Physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
1622
1627
.
7.
Sztipanovits
,
J.
, and
Ying
,
S.
,
2013
,“
Strategic R&D Opportunities for 21st Century, Cyber-Physical Systems—Connecting Computer and Information Systems With the Physical World
,” National Institute of Standards and Technology (NIST), Gaithersburg, MD, accessed Sept. 28, 2017, http://www.nist.gov/el/upload/12-Cyber-Physical-Systems020113_final.pdf
8.
Mikusz
,
M.
,
2014
, “
Towards an Understanding of Cyber-Physical Systems as Industrial Software-Product-Service Systems
,”
Proc. CIRP
,
16
(
1
), pp.
385
389
.
9.
Monostori
,
L.
,
Kádár
,
B.
,
Bauernhansl
,
T.
,
Kondoh
,
S.
,
Kumara
,
S.
,
Reinhart
,
G.
,
Sauer
,
O.
,
Schuh
,
G.
,
Sihn
,
W.
, and
Ueda
,
K.
,
2016
, “
Cyber-Physical Systems in Manufacturing
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
621
641
.
10.
Wang
,
L.
,
Shen
,
W.
, and
Lang
,
S.
,
2004
, “
Wise-ShopFloor: A Web-Based and Sensor-Driven e-Shop Floor
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
1
), pp.
56
60
.
11.
Chen
,
D.
,
Maffei
,
A.
,
Ferreirar
,
J.
,
Akillioglu
,
H.
,
Khabazzi
,
M. R.
, and
Zhang
,
X.
,
2015
, “
A Virtual Environment for the Management and Development of Cyber-Physical Manufacturing Systems
,”
IFAC-PapersOnLine
,
48
(
7
), pp.
29
36
.
12.
Chen
,
J.
,
Yang
,
J.
,
Zhou
,
H.
,
Xiang
,
H.
,
Zhu
,
Z.
,
Li
,
Y.
,
Lee
,
C. H.
, and
Xu
,
G.
,
2015
, “
CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach
,”
Eng.
,
1
(
2
), pp.
247
260
.
13.
Mourtzis
,
D.
,
Doukas
,
M.
, and
Milas
,
N.
,
2016
, “
A Knowledge-Based Social Networking App for Collaborative Problem-Solving in Manufacturing
,”
Manuf. Lett.
,
10
(
1
), pp.
1
5
.
14.
Mourtzis
,
D.
, and
Vlachou
,
E.
,
2016
, “
Cloud-Based Cyber-Physical Systems and Quality of Services
,”
TQM Emer. J.
,
28
(
5
), pp.
704
733
.
15.
Chui
,
M.
,
Löffler
,
M.
, and
Roberts
,
R.
,
2010
, “
The Internet of Things
,” McKinsey Quarterly, Seattle, WA, accessed Sept. 28, 2017, http://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things
16.
Atzori
,
L.
,
Iera
,
A.
, and
Morabito
,
G.
,
2010
, “
The Internet of Things: A Survey
,”
Comput. Networks
,
54
(
15
), pp.
2787
2805
.
17.
Perera
,
C.
,
Zaslavsky
,
A.
,
Christen
,
P.
, and
Georgakopoulos
,
D.
,
2014
, “
Context Aware Computing for the Internet of Things: A Survey
,”
IEEE Commun. Surv. Tutor.
,
16
(
1
), pp.
414
454
.
18.
Ding
,
F.
,
Song
,
A.
,
Tong
,
E.
, and
Li
,
J.
,
2016
, “
A Smart Gateway Architecture for Improving Efficiency of Home Network Applications
,”
J. Sens.
,
2016
, p. 2197237.
19.
Díaz
,
M.
,
Martín
,
C.
, and
Rubio
,
B.
,
2016
, “
State-of-the-Art, Challenges, and Open Issues in the Integration of Internet of Things and Cloud Computing
,”
J. Network Comput. Appl.
,
67
, pp.
99
117
.
20.
Luo
,
X.
,
Liu
,
J.
,
Zhang
,
D.
, and
Chang
,
X.
,
2016
, “
A Large-Scale Web QoS Prediction Scheme for the Industrial Internet of Things Based on a Kernel Machine Learning Algorithm
,”
Comput. Networks
,
101
(
1
), pp.
81
89
.
21.
Lee
,
I.
, and
Lee
,
K.
,
2015
, “
The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises
,”
Bus. Horiz.
,
58
(
4
), pp.
431
440
.
22.
Wright
,
P.
,
2014
, “
Cyber-Physical Product Manufacturing
,”
Manuf. Lett.
,
2
(
2
), pp.
49
53
.
23.
Li
,
Y.
,
Thai
,
M. T.
, and
Wu
,
W.
,
2008
,
Wireless Sensor Networks and Applications
,
Springer
,
New York
.
24.
Ding
,
F.
, and
Song
,
A.
,
2016
, “
Development and Coverage Evaluation of ZigBee-Based Wireless Network Applications
,”
J. Sens.
,
2016
, p. 2943974.
25.
Teti
,
R.
,
Jemielniak
,
K.
,
O'Donnell
,
G.
, and
Dornfeld
,
D.
,
2010
, “
Advanced Monitoring of Machining Operations
,”
CIRP Ann.–Manuf. Tech.
,
59
(
2
), pp.
717
739
.
26.
Post
,
T.
,
Ilsen
,
R.
,
Hamann
,
B.
,
Hagen
,
H.
, and
Aurich
,
J. C.
,
2017
, “
User-Guided Visual Analysis of Cyber-Physical Production Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021005
.
27.
Tapoglou
,
N.
,
Mehnen
,
J.
,
Vlachou
,
A.
,
Doukas
,
M.
,
Milas
,
N.
, and
Mourtzis
,
D.
,
2015
, “
Cloud Based Platform for Optimal Machining Parameter Selection Based on Function Blocks and Real Time Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040909
.
28.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
.
29.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.
30.
Rehorn
,
A. G.
,
Jiang
,
J.
, and
Orban
,
P. E.
,
2005
, “
State-of-the-Art Methods and Results in Tool Condition Monitoring: A Review
,”
Int. J. Adv. Manuf. Tech.
,
26
(
7–8
), pp.
693
710
.
31.
Mourtzis
,
D.
,
Vlachou
,
E.
,
Doukas
,
M.
,
Kanakis
,
N.
,
Xanthopoulos
,
N.
, and
Koutoupes
,
A.
,
2015
, “
Cloud- Based Adaptive Shop-Floor Scheduling Considering Machine Tool Availability
,”
ASME
Paper No. IMECE2015-53025.
32.
Mourtzis
,
D.
,
Vlachou
,
E.
,
Xanthopoulos
,
N.
,
Givehchi
,
M.
, and
Wang
,
L.
,
2016
, “
Cloud-Based Adaptive Process Planning Considering Availability and Capabilities of Machine Tools
,”
J. Manuf. Sys.
,
39
(
1
), pp.
1
8
.
33.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput.-Integr Manuf.
,”
28
(
1
), pp.
75
86
.
34.
Wu
,
D.
,
Thames
,
J. L.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Enhancing the Product Realization Process With Cloud-Based Design and Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
4
), p.
041004
.
35.
Wu
,
D.
,
Greer
,
M. J.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Cloud Manufacturing: Strategic Vision and State-of-the-Art
,”
J. Manuf. Sys.
,
32
(
4
), pp.
564
579
.
36.
Mourtzis
,
D.
,
Schoinochoritis
,
B.
, and
Vlachou
,
E.
,
2015
, “
A New Era of Web Collaboration: Cloud Computing and Its Applications in Manufacturing
,”
8th IWC Total Quality Management Advanced and Intelligent Approaches Conference
, Belgrade, Serbia, June 1–5, pp. 11–23.https://www.researchgate.net/publication/282094282_A_New_Era_of_Web_Collaboration_Cloud_Computing_and_its_Applications_in_Manufacturing
37.
Li
,
W.
, and
Mehnen
,
J.
,
2013
,
Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing
,
Springer
,
New York
.
38.
Wang
,
L.
,
Törngren
,
M.
, and
Onori
,
M.
,
2015
, “
Current Status and Advancement of Cyber-Physical Systems in Manufacturing
,”
J. Manuf. Sys.
,
37
(
1
), pp.
517
527
.
39.
Wang
,
Y.
, and
Nnaji
,
B. O.
,
2005
, “
Document-Driven Design for Distributed CAD Services in Service-Oriented Architecture
,”
ASME. J. Comput. Inf. Sci. Eng.
,
6
(
2
), pp.
127
138
.
40.
Erumban
,
A. A.
,
2008
, “
Lifetimes of Machinery and Equipment: Evidence From Dutch Manufacturing
,”
Rev. Income and Wealth
,
54
(
2
), pp.
237
268
.
41.
Mourtzis
,
D.
,
Vlachou
,
E.
, and
Milas
,
N.
,
2016
, “
Industrial Big Data as a Result of IoT Adoption in Manufacturing
,”
Proc. CIRP
,
55
(
1
), pp.
290
295
.
42.
Tan
,
L.
, and
Jiang
,
J.
,
2013
,
Digital Signal Processing
, 2nd ed.,
Academic Press
,
London
.
43.
Gyftakis
,
K. N.
,
Spyropoulos
,
D. V.
,
Kappatou
,
J. C.
, and
Mitronikas
,
E. D.
,
2014
, “
Taking Advantage of the Induction Motor Inherent Eccentricity Aiming to Discriminate the Broken Bar Fault From Load Oscillations
,”
International Conference on Electrical Machines
(
ICEM
), Berlin, Sept. 2–5, pp.
1933
1939
.
44.
Digi International
, 2014, “
XBee/XBee-PRO ZB RF Modules, Product Manual
,” Digi International Inc., Minneapolis, MN, accessed May 10, 2016, https://www.digi.com/resources/documentation/digidocs/PDFs/90000976.pdf
45.
Mourtzis
,
D.
,
Vlachou
,
E.
,
Milas
,
N.
, and
Xanthopoulos
,
N.
,
2015
, “
A Cloud-Based Approach for Maintenance of Machine Tools and Equipment Based on Shop-Floor Monitoring
,”
Proc. CIRP
,
41
(
1
), pp.
655
660
.
46.
Mourtzis
,
D.
,
Vlachou
,
E.
,
Milas
,
N.
, and
Dimitrakopoulos
,
G.
,
2016
, “
Energy Consumption Estimation for Machining Processes Based on Real-Time Shop Floor Monitoring Via Wireless Sensor Networks
,”
Proc. CIRP
,
57
(
1
), pp.
637
642
.
47.
ARM
, 2009, “
Cortex-M4 Processor
,” ARM Holdings Plc, Cambridge, UK, accessed Sept. 28, 2017, http://www.arm.com/products/processors/cortex-m/cortex-m4-processor.php
48.
OPC Foundation
,
2015
, “
OPC Unified Architecture Specification—Part 5: Information Model
,” OPC Foundation, Scottsdale, AZ, accessed Sept. 28, 2017, https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-5-information-model
49.
McKinsey & Company
,
2015
, “
Industry 4.0: How to Navigate Digitization of the Manufacturing Sector
,” McKinsey & Company, New York, accessed Aug. 28, 2017, https://www.mckinsey.de/sites/mck_files/files/mck_industry_40_report.pdf
You do not currently have access to this content.