Abstract

The quality of additive manufacturing (AM) built parts is highly correlated to the melt pool characteristics. Hence, melt pool monitoring and control can potentially improve the AM part quality. This paper presents a neighboring-effect modeling method (NBEM) that uses a scan strategy to predict melt pool size. The prediction model can further assist in scan strategy optimization and real-time process control. The structure of the proposed model is formulated based on the physical principles of melt pool formation, while experimental data are used to identify the optimal coefficients. Compared to the traditional power-velocity prediction models, the NBEM model introduces the cumulative neighboring-effect factors as additional input variables. These factors represent the neighborhood impact of scan path on the focal point melt pool formation from time and distance perspective. Two experiments use different scan strategies to collect in situ measurements of the melt pool size for model construction and validation. By introducing the neighboring-effect factors, the global normalized root-mean-square Error (NRMSE) is improved from around 0.10 to 0.08. More importantly, the local NRMSE of irregular melt pool area prediction is improved to around 0.15 for more than 50% improvement. The case studies verify that the proposed method can predict the melt pool variations by seamlessly integrating scan strategy considerations.

References

1.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
. 10.1063/1.4937809
2.
Lu
,
Y.
,
Choi
,
S.
, and
Witherell
,
P.
,
2015
, “
Towards an Integrated Data Schema Design for Additive Manufacturing: Conceptual Modeling
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, p. V01AT02A032.
3.
Witherell
,
P.
,
Feng
,
S.
,
Simpson
,
T. W.
,
Saint John
,
D. B.
,
Michaleris
,
P.
,
Liu
,
Z.-K.
,
Chen
,
L.-Q.
, and
Martukanitz
,
R.
,
2014
, “
Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061025
. 10.1115/1.4028533
4.
Cunningham
,
R.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Rollett
,
A. D.
,
2017
, “
Synchrotron-Based X-Ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V
,”
JOM
,
69
(
3
), pp.
479
484
. 10.1007/s11837-016-2234-1
5.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
. 10.1016/j.addma.2016.12.001
6.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
. 10.1016/j.actamat.2016.02.014
7.
Rai
,
R.
,
Elmer
,
J.
,
Palmer
,
T.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti–6Al–4V, 304L Stainless Steel and Vanadium
,”
J. Phys. D: Appl. Phys.
,
40
(
18
), pp.
5753
5766
. 10.1088/0022-3727/40/18/037
8.
Lu
,
Y.
,
Yang
,
Z.
,
Eddy
,
D.
, and
Krishnamurty
,
S.
,
2018
, “
Self-Improving Additive Manufacturing Knowledge Management
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–28
, p. V01BT02A016.
9.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Humbeeck
,
J. V.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
. 10.1016/j.actamat.2010.02.004
10.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
. 10.1115/1.4034103
11.
Zhang
,
B.
,
Dembinski
,
L.
, and
Coddet
,
C.
,
2013
, “
The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder
,”
Mater. Sci. Eng. A
,
584
, pp.
21
31
. 10.1016/j.msea.2013.06.055
12.
Mertens
,
R.
,
Dadbakhsh
,
S.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2018
, “
Application of Base Plate Preheating During Selective Laser Melting
,”
Procedia CIRP
,
74
, pp.
5
11
. 10.1016/j.procir.2018.08.002
13.
Yan
,
W.
,
Smith
,
J.
,
Ge
,
W.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Multiscale Modeling of Electron Beam and Substrate Interaction: A New Heat Source Model
,”
Comput. Mech.
,
56
(
2
), pp.
265
276
. 10.1007/s00466-015-1170-1
14.
Yan
,
W.
,
Ge
,
W.
,
Smith
,
J.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2016
, “
Multi-Scale Modeling of Electron Beam Melting of Functionally Graded Materials
,”
Acta Mater.
,
115
, pp.
403
412
. 10.1016/j.actamat.2016.06.022
15.
Yan
,
W.
,
Ge
,
W.
,
Smith
,
J.
,
Wagner
,
G. J.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Towards High-Quality Selective Beam Melting Technologies: Modeling and Experiments of Single Track Formations
,”
26th Annual International Symposium on Solid Freeform Fabrication
,
Austin, TX
,
August 2015
.
16.
King
,
W.
,
Anderson
,
A. T
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
, and
Khairallah
,
S. A.
,
2015
, “
Overview of Modelling and Simulation of Metal Powder Bed Fusion Process at Lawrence Livermore National Laboratory
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
957
968
. 10.1179/1743284714Y.0000000728
17.
Yang
,
Z.
,
Eddy
,
D.
,
Krishnamurty
,
S.
,
Groose
,
I.
,
Denno
,
P.
,
Lu
,
Y.
, and
Witherell
,
P.
,
2017
, “
Investigating Grey-Box Modeling for Predictive Analytics in Smart Manufacturing
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, p. V02BT03A024.
18.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
19.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
From Scan Strategy to Melt Pool Prediction: a Neighboring-Effect Modeling Method
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
20.
Gong
,
H.
,
Gu
,
H.
,
Zeng
,
K.
,
Dilip
,
J. J. S.
,
Pal
,
D.
,
Stucker
,
B.
,
Christiansen
,
D.
,
Beuth
,
J.
, and
Lewandowski
,
J. L.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder
,”
Solid Freeform Fabrication Symposium
,
Texas, USA
,
Aug. 4
, pp.
256
267
.
21.
Khan
,
M. M. A.
,
Romoli
,
L.
,
Fiaschi
,
M.
,
Sarri
,
F.
, and
Dini
,
G.
,
2010
, “
Experimental Investigation on Laser Beam Welding of Martensitic Stainless Steels in a Constrained Overlap Joint Configuration
,”
J. Mater. Process. Technol.
,
210
(
10
), pp.
1340
1353
. 10.1016/j.jmatprotec.2010.03.024
22.
Beal
,
V. E.
,
Erasenthiran
,
P.
,
Hopkinson
,
N.
,
Dickens
,
P.
, and
Ahrens
,
C. H.
,
2006
, “
The Effect of Scanning Strategy on Laser Fusion of Functionally Graded H13/Cu Materials
,”
Int. J. Adv. Manuf. Technol.
,
30
(
9–10
), pp.
844
852
. 10.1007/s00170-005-0130-x
23.
Islam
,
M.
,
Purtonen
,
T.
,
Piili
,
H.
,
Salminen
,
A.
, and
Nyrhilä
,
O.
,
2013
, “
Temperature Profile and Imaging Analysis of Laser Additive Manufacturing of Stainless Steel
,”
Phys. Procedia
,
41
, pp.
835
842
. 10.1016/j.phpro.2013.03.156
24.
Carter
,
L. N.
,
Martin
,
C.
,
Withers
,
P. J.
, and
Attallah
,
M. M.
,
2014
, “
The Influence of the Laser Scan Strategy on Grain Structure and Cracking Behaviour in SLM Powder-Bed Fabricated Nickel Superalloy
,”
J. Alloys Compd.
,
615
, pp.
338
347
. 10.1016/j.jallcom.2014.06.172
25.
Kamath
,
C.
,
El-dasher
,
B.
,
Gallegos
,
G. F.
,
King
,
W. E.
, and
Sisto
,
A.
,
2014
, “
Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400 W
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
65
78
. 10.1007/s00170-014-5954-9
26.
Parry
,
L.
,
Ashcroft
,
I.
, and
Wildman
,
R. D.
,
2016
, “
Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation
,”
Addit. Manuf.
,
12
, pp.
1
15
.
27.
Furumoto
,
T.
,
Egashira
,
K.
,
Munekage
,
K.
, and
Abe
,
S.
,
2018
, “
Experimental Investigation of Melt Pool Behaviour During Selective Laser Melting by High Speed Imaging
,”
CIRP Ann.
,
67
(
1
), pp.
253
256
.
28.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
, pp.
87
98
. 10.1016/j.addma.2014.08.002
29.
Manvatkar
,
V.
,
De
,
A.
, and
DebRoy
,
T.
,
2014
, “
Heat Transfer and Material Flow During Laser Assisted Multi-Layer Additive Manufacturing
,”
J. Appl. Phys.
,
116
(
12
), p.
124905
. 10.1063/1.4896751
30.
Bertoli
,
U. S.
,
Guss
,
G.
,
Wu
,
S.
,
Matthews
,
M. J.
, and
Schoenung
,
J. M.
,
2017
, “
In-Situ Characterization of Laser-Powder Interaction and Cooling Rates Through High-Speed Imaging of Powder Bed Fusion Additive Manufacturing
,”
Mater. Des.
,
135
, pp.
385
396
. 10.1016/j.matdes.2017.09.044
31.
Hooper
,
P. A.
,
2018
, “
Melt Pool Temperature and Cooling Rates in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
22
, pp.
548
559
. 10.1016/j.addma.2018.05.032
32.
Lane
,
B.
,
Mekhontsev
,
S.
,
Grantham
,
S.
,
Vlasea
,
M.
,
Whiting
,
J.
,
Yeung
,
H.
,
Fox
,
J.
,
Zarobila
,
C.
,
Neira
,
J. E.
,
Mcglauflin
,
M.
,
Hanssen
,
L. M.
,
Moylan
,
S.
,
Donmez
,
M. A.
, and
Rice
,
J.
,
2016
, “
Design, Developments, and Results From the Nist Additive Manufacturing Metrology Testbed (AMMT)
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
August
, pp.
1145
1160
.
33.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019,
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, CA
,
August
,
IEEE
, pp.
640
647
.
34.
Yeung
,
H.
,
Lane
,
B. M.
,
Donmez
,
M. A.
,
Fox
,
J. C.
, and
Neira
,
J.
,
2018
, “
Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems
,”
Procedia Manuf.
,
26
, pp.
871
879
. 10.1016/j.promfg.2018.07.112
35.
Yang
,
Z.
,
Eddy
,
D.
,
Krishnamurty
,
S.
,
Grosse
,
I.
,
Denno
,
P.
, and
Lopez
,
F.
,
2016
, “
Investigating Predictive Metamodeling for Additive Manufacturing
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, p. V01AT02A020.
36.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
040801
. 10.1115/1.4042789
37.
Moges
,
T.
,
Yan
,
W.
,
Lin
,
S.
,
Ameta
,
G.
,
Fox
,
J.
, and
Witherell
,
P.
,
2018
, “
Quantifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models and Simulations
,”
Solid Freeform Fabrication Symposium An Additive Manufacturing Conference
,
TX, USA
,
August
.
You do not currently have access to this content.