Abstract

In recent years, there has been a growing interest in the connectivity of vehicles. This connectivity allows for the monitoring and analysis of large amount of sensor data from vehicles during their normal operations. In this paper, an approach is proposed for analyzing such data to determine a vehicle component’s remaining useful life named time-to-failure (TTF). The collected data is first used to determine the type of performance degradation and then to train a regression model to predict the health condition and performance degradation rate of the component using a machine learning algorithm. When new data is collected later for the same component in a different system, the trained model can be used to estimate the time-to-failure of the component based on the predicted health condition and performance degradation rate. To validate the proposed approach, a quarter-car model is simulated, and a machine learning algorithm is applied to determine the time-to-failure of a failing shock absorber. The results show that a tap-delayed nonlinear autoregressive network with exogenous input (NARX) can accurately predict the health condition and degradation rate of the shock absorber and can estimate the component’s time-to-failure. To the best of the authors’ knowledge, this research is the first attempt to determine a component’s time-to-failure using a machine learning algorithm.

References

1.
Lu
,
N.
,
Cheng
,
N.
,
Zhang
,
N.
,
Shen
,
X.
, and
Mark
,
J. W.
,
2014
, “
Connected Vehicles: Solutions and Challenges
,”
IEEE Internet Things J.
,
1
(
4
), pp.
289
299
. 10.1109/JIOT.2014.2327587
2.
Talebpour
,
A.
, and
Mahmassani
,
H. S.
,
2016
, “
Influence of Connected and Autonomous Vehicles on Traffic Flow Stability and Throughput
,”
Transp. Res. Part C: Emerging Technol.
,
71
, pp.
143
163
. 10.1016/j.trc.2016.07.007
3.
Schmidt
,
B.
, and
Wang
,
L.
,
2018
, “
Cloud-Enhanced Predictive Maintenance
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1
), pp.
5
13
. 10.1007/s00170-016-8983-8
4.
Dressler
,
F.
,
Hartenstein
,
H.
,
Altintas
,
O.
, and
Tonguz
,
O. K.
,
2014
, “
Inter-vehicle Communication: Quo Vadis
,”
IEEE Commun. Mag.
,
52
(
6
), pp.
170
177
. 10.1109/MCOM.2014.6829960
5.
Susto
,
G. A.
,
Schirru
,
A.
,
Pampuri
,
S.
,
McLoone
,
S.
, and
Beghi
,
A.
,
2015
, “
Machine Learning for Predictive Maintenance: A Multiple Classifier Approach
,”
IEEE Trans. Ind. Inf.
,
11
(
3
), pp.
812
820
. 10.1109/TII.2014.2349359
6.
Isermann
,
R.
,
2004
, “
Model-based Fault-Detection and Diagnosis—Status and Applications
,”
Annu. Rev. Control
,
29
(
1
), pp.
71
85
. 10.1016/j.arcontrol.2004.12.002
7.
Ermagan
,
V.
,
Krueger
,
I.
,
Menarini
,
M.
,
Mizutani
,
J.
,
Oguchi
,
K.
, and
Weir
,
D.
,
2007
, “
Towards Model-Based Failure-Management for Automotive Software
,”
Fourth International Workshop on Software Engineering for Automotive Systems (SEAS ‘07)
,
Minneapolis, MN
,
May 20–26
, p.
8
. http://dx.doi.org/10.1109/SEAS.2007
8.
Cho
,
D.
, and
Paolella
,
P.
,
1990
, “
Model-Based Failure Detection and Isolation of Automotive Powertrain Systems
,”
1990 American Control Conference
,
San Diego, CA
,
May 23–25
, pp.
2898
2907
.http://dx.doi.org/10.23919/ACC.1990.4791248
9.
Pickard
,
K.
,
Leopold
,
T.
,
Miller
,
P.
, and
Bertsche
,
P.
,
2007
, “
Electronic Failures and Monitoring Strategies in Automotive Control Units
,”
2007 Annual Reliability and Maintainability Symposium
,
Orlando, FL
,
Jan. 22–25
, pp.
17
21
.http://dx.doi.org/10.1109/RAMS.2007.328043
10.
Rodger
,
J. A.
,
2012
, “
Toward Reducing Failure Risk in an Integrated Vehicle Health Maintenance System: A Fuzzy Multi-Sensor Data Fusion Kalman Filter Approach for IVHMS
,”
Expert Syst. Appl.
,
39
(
10
), pp.
9821
9836
. 10.1016/j.eswa.2012.02.171
11.
Gerler
,
J.
,
Costin
,
M.
,
Xiaowen
,
F.
,
Kowalczuk
,
Z.
,
Kunwer
,
M.
, and
Monajemy
,
R.
,
1995
, “
Model Based Diagnosis for Automotive Engines-Algorithm Development and Testing on a Production Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
61
69
. 10.1109/87.370711
12.
Guida
,
M.
,
Pulcini
,
G.
, and
Vianello
,
M.
,
2009
, “
Early Inference on Reliability of Upgraded Automotive Components by Using Past Data and Technical Information
,”
J. Stat. Plann. Inference
,
139
(
5
), pp.
1604
1618
. 10.1016/j.jspi.2007.08.008
13.
Li
,
Y.-F.
,
Huang
,
H.-Z.
,
Zhang
,
H.
,
Xiao
,
N.-C.
, and
Liu
,
Y.
,
2013
, “
Fuzzy Sets Method of Reliability Prediction and Its Application to a Turbocharger of Diesel Engines
,”
Adv. Mech. Eng.
,
2013
, pp.
1–7
. 10.1155/2013/216192
14.
Kalmakov
,
V. A.
,
Andreev
,
A. A.
, and
Martyanov
,
A. S.
,
2017
, “
Remaining Vehicles Useful Lifetime Estimation Based on Operation Conditions Measurement
,”
Procedia Eng.
,
206
, pp.
1716
1721
. 10.1016/j.proeng.2017.10.703
15.
Xu
,
K.
,
Xie
,
M.
,
Tang
,
L. C.
, and
Ho
,
S. L.
,
2003
, “
Application of Neural Networks in Forecasting Engine Systems Reliability
,”
Appl. Soft Comput.
,
2
(
4
), pp.
255
268
. 10.1016/S1568-4946(02)00059-5
16.
Bergmeir
,
P.
,
Nitsche
,
C.
,
Nonnast
,
J.
,
Bargende
,
M.
,
Antony
,
P.
, and
Keller
,
U.
,
2014
, “
Using Balanced Random Forests on Load Spectrum Data for Classifying Component Failures of a Hybrid Electric Vehicle Fleet
,”
2014 13th International Conference on Machine Learning and Applications
,
Detroit, MI
,
Dec. 3–5
, pp.
397
404
.http://dx.doi.org/10.1109/ICMLA.2014.71
17.
Boussaada
,
Z.
,
Curea
,
O.
,
Remaci
,
A.
,
Camblong
,
H.
, and
Mrabet Bellaaj
,
N.
,
2018
, “
A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation
,”
Energies
,
11
(
3
), p.
620
. 10.3390/en11030620
18.
Messner
,
B.
,
Tilbury
,
D.
,
Hill
,
R.
, and
Taylor
,
J.
,
2017
,
Suspension: Simulink Modeling
. http://ctms.engin.umich.edu/CTMS/index.php?example=Suspension&section=SimulinkModeling, Accessed Dec. 8, 2019.
19.
Łuczko
,
J.
,
Ferdek
,
U.
, and
Łatas
,
W.
,
2018
, “
Nonlinear Analysis of Shock Absorbers With Amplitude-Dependent Damping
,”
Proceedings of 22nd International Conference on Computer Methods in Mechanics
,
Lubin, Poland
,
Sept. 13–16, 2017
, Vol.
1922
, p.
100011
. https://doi.org/10.1063/1.5019096
You do not currently have access to this content.