Abstract

Selective assembly is an assembly technique for producing high-quality assemblies from relatively lower quality mating parts. Developing the application of this technique to sheet metal assemblies in the automotive industry can improve the geometrical quality and reduce production costs significantly. Nevertheless, the required calculation time is the main obstacle against this development. To apply a selective assembly technique, an optimization problem of finding the optimal combination of mating parts should be solved. This problem is an MINLP optimization problem for selective assembly of sheet metals. This paper demonstrates that the phenotype-genotype mapping commonly used in most conventional selective assembly studies enlarges the search domain of the optimization. Thereafter, a new approach that makes the mapping one-to-one is proposed and applied to three selective assembly sample cases from the literature. Moreover, it is indicated that meta-heuristic methods are superior to MILP and MINLP methods in solving this problem, particularly for assemblies of more than two components and relatively large batch sizes. The results evidence that using the new method improves the convergence rate of meta-heuristics in solving the problem by reducing the number of cost function evaluations to 45% for sheet metal assemblies. This means reducing up-till 26 h of the optimization time for the presented sample cases.

References

1.
Mansor
,
E. M.
,
1961
, “
Selective Assembly-Its Analysis and Applications
,”
Int. J. Prod. Res.
,
1
(
1
), pp.
13
24
. 10.1080/00207546108943070
2.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann. Manuf. Technol.
,
66
(
1
), pp.
137
140
. 10.1016/j.cirp.2017.04.038
3.
Colledani
,
M.
,
Ebrahimi
,
D.
, and
Tolio
,
T.
,
2014
, “
Integrated Quality and Production Logistics Modelling for the Design of Selective and Adaptive Assembly Systems
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
453
456
. 10.1016/j.cirp.2014.03.120
4.
Tao
,
F.
, and
Zhang
,
M.
,
2017
, “
Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing
,”
IEEE Access
,
5
(
1
), pp.
20418
20427
. 10.1109/ACCESS.2017.2756069
5.
Rezaei Aderiani
,
A.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041019
. 10.1115/1.4043529
6.
Cronrath
,
C.
,
Aderiani
,
A. R.
, and
Lennartson
,
B.
,
2019
, “
Enhancing Digital Twins Through Reinforcement Learning
,”
IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 22–26
, pp.
293
298
.
7.
Lyu
,
N.
,
Lee
,
B.
, and
Saitou
,
K.
,
2005
, “
Optimal Subassembly Partitioning of Space Frame Structures for In-Process Dimensional Adjustability and Stiffness
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
527
535
. 10.1115/1.2181599
8.
Lee
,
B.
, and
Saitou
,
K.
,
2007
, “
Assembly Synthesis With Subassembly Partitioning for Optimal In-Process Dimensional Adjustability
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
21
(
1
), pp.
31
43
. 10.1017/S0890060407070126
9.
Rezaei Aderiani
,
A.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2019
, “
Developing a Selective Assembly Technique for Sheet Metal Assemblies
,”
Int. J. Prod. Res.
,
57
(
22
), pp.
7174
7188
. 10.1080/00207543.2019.1581387
10.
Lorin
,
S.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2018
, “
Efficient Compliant Variation Simulation of Spot-Welded Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011007
. 10.1115/1.4041706
11.
Lindau
,
B.
,
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2014
, “
Method for Handling Model Growth in Nonrigid Variation Simulation of Sheet Metal Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031004
. 10.1115/1.4027149
12.
Desmond
,
D. J.
, and
Setty
,
C. A.
,
1961
, “
Simplification of Selective Assembly
,”
Int. J. Prod. Res.
,
1
(
3
), pp.
3
18
. 10.1080/00207546108943085
13.
Fang
,
D.
, and
Zhang
,
Y.
,
1995
, “
A New Algorithm for Minimising the Surplus Parts in Selective Assembly
,”
Comput. Ind. Eng.
,
28
(
2
), pp.
341
350
. 10.1016/0360-8352(94)00183-N
14.
Fang
,
X. D.
, and
Zhang
,
Y.
,
1996
, “
Assuring the Matchable Degree in Selective Assembly Via a Predictive Model Based on Set Theory and Probability Method
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
252
258
. 10.1115/1.2831018
15.
Pugh
,
G. A.
,
1992
, “
Selective Assembly with Components of Dissimilar Variance
,”
Comput. Ind. Eng.
,
23
(
1-4
), pp.
487
491
. 10.1016/0360-8352(92)90167-I
16.
Chan
,
K. C.
, and
Linn
,
R. J.
,
1998
, “
A Grouping Method for Selective Assembly of Parts of Dissimilar Distributions
,”
Qual. Eng.
,
11
(
2
), pp.
221
234
. 10.1080/08982119808919233
17.
Coullard
,
C.
,
Gamble
,
A.
, and
Jones
,
P.
,
1998
, “
Matching Problems in Selective Assembly Operations
,”
Ann. Oper. Res.
,
76
(
1
), pp.
95
107
. 10.1023/A:1018960924601
18.
Iwata
,
S.
,
Matsui
,
T.
, and
McCormick
,
S. T.
,
1998
, “
A Fast Bipartite Network Flow Algorithm for Selective Assembly
,”
Oper. Res. Lett.
,
22
(
4-5
), pp.
137
143
. 10.1016/S0167-6377(98)00017-0
19.
Burkard
,
R.
,
Dell’Amico
,
M.
, and
Martello
,
S.
,
2009
,
Assignment Problems
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
20.
Tan
,
M. H.
, and
Wu
,
C. F. J.
,
2012
, “
Generalized Selective Assembly
,”
IIE Trans.
,
44
(
1
), pp.
27
42
. 10.1080/0740817X.2010.551649
21.
Kannan
,
S.
,
Jayabalan
,
V.
, and
Jeevanantham
,
K.
,
2003
, “
Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly
,”
Int. J. Prod. Res.
,
41
(
14
), pp.
3301
3313
. 10.1080/0020754031000109143
22.
Kannan
,
S. M.
,
Sivasubramanian
,
R.
, and
Jayabalan
,
V.
,
2009
, “
Particle Swarm Optimization for Minimizing Assembly Variation in Selective Assembly
,”
Int. J. Adv. Manuf. Technol.
,
42
(
7-8
), pp.
793
803
. 10.1007/s00170-008-1638-7
23.
Chen
,
J.
,
Dai
,
K. S.
, and
Xu
,
S. L.
,
2012
, “
Selective Assembly for Components with Multiple Characteristics
,”
Advanced Materials Research
,
79–86
(
1
), pp.
542
543
. www.scientific.net/amr.542-543.79
24.
Kannan
,
S.
,
Sivasubramanian
,
R.
, and
Jayabalan
,
V.
,
2009
, “
A New Method in Selective Assembly for Components with Skewed Distributions
,”
Int. J. Prod. Qual. Manage.
,
4
(
5/6
), p.
569
.
25.
Rezaei Aderiani
,
A.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
A Multistage Approach to the Selective Assembly of Components Without Dimensional Distribution Assumptions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071015
. 10.1115/1.4039767
26.
Kannan
,
S. M.
,
Asha
,
A.
, and
Jayabalan
,
V.
,
2005
, “
A New Method in Selective Assembly to Minimize Clearance Variation for a Radial Assembly Using Genetic Algorithm
,”
Qual. Eng.
,
17
(
4
), pp.
595
607
. 10.1080/08982110500225398
27.
Kumar
,
M. S.
,
Kannan
,
S.
, and
Jayabalan
,
V.
,
2007
, “
A New Algorithm for Minimizing Surplus Parts in Selective Assembly by Using Genetic Algorithm
,”
Int. J. Prod. Res.
,
45
(
20
), pp.
4793
4822
. 10.1080/00207540600810085
28.
Kumar
,
M. S.
, and
Kannan
,
S.
,
2007
, “
Optimum Manufacturing Tolerance to Selective Assembly Technique for Different Assembly Specifications by Using Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
32
(
5-6
), pp.
591
598
. 10.1007/s00170-005-0337-x
29.
Asha
,
A.
,
Kannan
,
S. M.
, and
Jayabalan
,
V.
,
2008
, “
Optimization of Clearance Variation in Selective Assembly for Components with Multiple Characteristics
,”
Int. J. Adv. Manuf. Technol.
,
38
(
9-10
), pp.
1026
1044
. 10.1007/s00170-007-1136-3
30.
Babu
,
J. R.
, and
Asha
,
A.
,
2014
, “
Tolerance Modelling in Selective Assembly for Minimizing Linear Assembly Tolerance Variation and Assembly Cost by Using Taguchi and AIS Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
869
881
. 10.1007/s00170-014-6097-8
31.
Lanza
,
G.
,
Haefner
,
B.
, and
Kraemer
,
A.
,
2015
, “
Optimization of Selective Assembly and Adaptive Manufacturing by Means of Cyber-Physical System Based Matching
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
399
402
. 10.1016/j.cirp.2015.04.123
32.
Srinivas
,
M.
, and
Patnaik
,
L. M.
,
1994
, “
Genetic Algorithms: A Survey
,”
Computer
,
27
(
6
), pp.
17
26
. 10.1109/2.294849
33.
Ponnambalam
,
S. G.
,
Saravana Sankar
,
S.
,
Sriram
,
S.
, and
Gurumarimuthu
,
M.
,
2007
, “
Parallel Populations Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly
,”
2006 IEEE International Conference on Automation Science and Engineering, CASE
,
Shanghai, China
,
Oct. 8–10
, pp.
496
500
.
34.
Bean
,
J. C.
,
1994
, “
Genetic Algorithms and Random Keys for Sequencing and Optimization
,”
ORSA J. Comput.
,
6
(
2
), pp.
154
160
. 10.1287/ijoc.6.2.154
35.
Blum
,
C.
, and
Roli
,
A.
,
2003
, “
Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison
,”
ACM Comput. Surv.
,
35
(
3
), pp.
268
308
. 10.1145/937503.937505
36.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
You do not currently have access to this content.