Abstract

Manufacturing is an essential component of the economy, and globalization further influences it by the driving forces of outsourcing and distributed manufacturing with technological advances. However, the decreasing share in gross domestic product (GDP) and shrinking employment from the manufacturing sector have become concerning matters. Recently, the inclusive manufacturing paradigm has been proposed by concentrating on globally observed economic, environmental, and societal issues. This paper advances the concept of an inclusive manufacturing system (IMS) by developing an optimization-based model to enable resource composition scenarios. The developed model encapsulates an amalgamation of a realistic and complex production system, suppliers, manufacturers, assembly stations, logistics providers, and courier services. The model aims to optimize the cost and emission of manufacturing, assembly, and logistics systems while producing a product. The formulated optimization problem is discrete in nature with binary and integer decision variables and multiple complexities of nonlinear functions. Therefore, evolutionary techniques are exercised as solution approaches to handle the problem's complexity and size. A simulated case example has been designed to envision the inclusive manufacturing system by perceiving a real-life production scenario of labeling conveyor, a customized product engaged for most packaged items. The study reveals that network size influences cost and emission because of competitiveness among service providers to get the order. The result also insights that a significant share of the cost comes from production and assembling activities, whereas transportation services dominate over manufacturing-assembly activities in carbon emission.

References

1.
Haraguchi
,
N.
,
Cheng
,
C. F. C.
, and
Smeets
,
E.
,
2017
, “
The Importance of Manufacturing in Economic Development: Has This Changed?
,”
World Dev.
,
93
, pp.
293
315
.
2.
Bivens
,
J.
,
2019
,
Updated Employment Multipliers for the US Economy
,
Economic Policy Institute
,
Washington, DC
, pp.
1
28
. epi.org/160282
3.
Wylde
,
G.
,
Da Costa
,
C.
, and
Da Silva
,
P. E.
,
2020
, “
Accelerating the Impact of Industrial IoT in Small and Medium-Sized Enterprises: A Protocol for Action
,”
World Econ. Forum
, pp.
1
31
.
4.
Gaspar
,
R. E.
,
2017
, “
Large Firm Dominance on Country’s Entrepreneurship Potentials
,”
J. Glob. Entrep. Res
,
7
(
1
), pp.
1
16
.
5.
Govindarajan
,
V.
,
Lev
,
B.
,
Srivastava
,
A.
, and
Enache
,
L.
,
2019
, “
The Gap Between Large and Small Companies Is Growing. Why?
Harv. Bus. Rev.
,
16
, pp.
1
7
.
6.
Wu
,
D.
,
Terpenny
,
J.
, and
Gentzsch
,
W.
,
2015
, “
Economic Benefit Analysis of Cloud-Based Design, Engineering Analysis, and Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040903
.
7.
Li
,
M.
,
Chen
,
H.
,
Shi
,
X.
,
Liu
,
S.
,
Zhang
,
M.
, and
Lu
,
S.
,
2019
, “
A Multi-Information Fusion ‘Triple Variables With Iteration’ Inertia Weight PSO Algorithm and Its Application
,”
Appl. Soft Comput.
,
84
, p.
105677
.
8.
Mehrbod
,
A.
,
Zutshi
,
A.
,
Grilo
,
A.
, and
Jardim-Goncalves
,
R.
,
2017
, “
Matching Heterogeneous E-Catalogues in B2B Marketplaces Using Vector Space Model
,”
Int. J. Comput. Integr. Manuf.
,
30
(
1
), pp.
134
146
.
9.
Singh
,
S.
,
Mahanty
,
B.
, and
Tiwari
,
M. K.
,
2019
, “
Framework and Modelling of Inclusive Manufacturing System
,”
Int. J. Comput. Integr. Manuf.
,
32
(
2
), pp.
105
123
.
10.
Wu
,
Z.
,
Liu
,
T.
,
Gao
,
Z.
,
Cao
,
Y.
, and
Yang
,
J.
,
2016
, “
Tolerance Design With Multiple Resource Suppliers on Cloud-Manufacturing Platform
,”
Int. J. Adv. Manuf. Technol.
,
84
(
1–4
), pp.
335
346
.
11.
Liu
,
Y.
,
Xu
,
X.
,
Zhang
,
L.
, and
Tao
,
F.
,
2016
, “
An Extensible Model for Multitask-Oriented Service Composition and Scheduling in Cloud Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041009
.
12.
Tao
,
F.
,
Zhao
,
D.
,
Yefa
,
H.
, and
Zhou
,
Z.
,
2010
, “
Correlation-Aware Resource Service Composition and Optimal-Selection in Manufacturing Grid
,”
Eur. J. Oper. Res.
,
201
(
1
), pp.
129
143
.
13.
Lartigau
,
J.
,
Xu
,
X.
,
Nie
,
L.
, and
Zhan
,
D.
,
2015
, “
Cloud Manufacturing Service Composition Based on QoS with Geo-Perspective Transportation Using an Improved Artificial Bee Colony Optimisation Algorithm
,”
Int. J. Prod. Res.
,
53
(
14
), pp.
4380
4404
.
14.
Guo
,
H.
,
Tao
,
F.
,
Zhang
,
L.
,
Laili
,
Y. J.
, and
Liu
,
D. K.
,
2012
, “
Research on Measurement Method of Resource Service Composition Flexibility in Service-Oriented Manufacturing System
,”
Int. J. Comput. Integr. Manuf.
,
25
(
2
), pp.
113
135
.
15.
Tao
,
F.
,
Zhao
,
D.
, and
Zhang
,
L.
,
2010
, “
Resource Service Optimal-Selection Based on Intuitionistic Fuzzy Set and Non-Functionality QoS in Manufacturing Grid System
,”
Knowl. Inf. Syst.
,
25
(
1
), pp.
185
208
.
16.
Li
,
H.
,
Liang
,
M.
, and
He
,
T.
,
2017
, “
Optimizing the Composition of a Resource Service Chain With Interorganizational Collaboration
,”
IEEE Trans. Ind. Inf.
,
13
(
3
), pp.
1152
1161
.
17.
Sepehri
,
M.
,
2012
, “
A Grid-Based Collaborative Supply Chain With Multi-Product Multi-Period Production-Distribution
,”
Enterp. Inf. Syst.
,
6
(
1
), pp.
115
137
.
18.
Hassanzadeh
,
A.
, and
Rasti-Barzoki
,
M.
,
2017
, “
Minimizing Total Resource Consumption and Total Tardiness Penalty in a Resource Allocation Supply Chain Scheduling and Vehicle Routing Problem
,”
Appl. Soft Comput.
,
58
, pp.
307
323
.
19.
Ganji
,
M.
,
Kazemipoor
,
H.
,
Hadji Molana
,
S. M.
, and
Sajadi
,
S. M.
,
2020
, “
A Green Multi-Objective Integrated Scheduling of Production and Distribution With Heterogeneous Fleet Vehicle Routing and Time Windows
,”
J. Cleaner Prod.
,
259
, p.
120824
.
20.
Zhou
,
L.
,
Zhang
,
L.
, and
Fang
,
Y.
,
2020
, “
Logistics Service Scheduling With Manufacturing Provider Selection in Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
65
(
Feb.
), p.
101914
.
21.
Balta
,
E. C.
,
Lin
,
Y.
,
Barton
,
K.
,
Tilbury
,
D. M.
, and
Mao
,
Z. M.
,
2018
, “
Production as a Service: A Digital Manufacturing Framework for Optimizing Utilization
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1483
1493
.
22.
Wang
,
Y.
,
Zhang
,
Y.
,
Tao
,
F.
,
Chen
,
T.
,
Cheng
,
Y.
, and
Yang
,
S.
,
2019
, “
Logistics-Aware Manufacturing Service Collaboration Optimisation Towards Industrial Internet Platform
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
4007
4026
.
23.
Garcia
,
D. J.
,
Mozaffar
,
M.
,
Ren
,
H.
,
Correa
,
J. E.
,
Ehmann
,
K.
,
Cao
,
J.
, and
You
,
F.
,
2019
, “
Sustainable Manufacturing With Cyber-Physical Discrete Manufacturing Networks: Overview and Modeling Framework
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021013
.
24.
Bi
,
L.
,
Zuo
,
Y.
,
Tao
,
F.
,
Liao
,
T. W.
, and
Liu
,
Z.
,
2017
, “
Energy-Aware Material Selection for Product With Multicomponent Under Cloud Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031007
.
25.
Tao
,
F.
,
Zhang
,
L.
,
Liu
,
Y.
,
Cheng
,
Y.
,
Wang
,
L.
, and
Xu
,
X.
,
2015
, “
Manufacturing Service Management in Cloud Manufacturing: Overview and Future Research Directions
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040912
.
26.
Kovačević
,
M.
,
Madić
,
M.
, and
Radovanović
,
M.
,
2013
, “
Software Prototype for Validation of Machining Optimization Solutions Obtained With Meta-Heuristic Algorithms
,”
Expert Syst. Appl.
,
40
(
17
), pp.
6985
6996
.
27.
Deb
,
K.
,
2011
,
Multi-Objective Optimisation Using Evolutionary Algorithms: An Introduction
,
Springer
,
London
.
28.
Goh
,
C.-K.
, and
Tan
,
K. C.
,
2009
,
Evolutionary Multi-Objective Optimization in Uncertain Environments:Issues and Algorithms
,
Springer-Verlag
,
Berlin/Heidelberg
.
29.
Tao
,
F.
,
Zhao
,
D.
,
Hu
,
Y.
, and
Zhou
,
Z.
,
2008
, “
Resource Service Composition and Its Optimal-Selection Based on Particle Swarm Optimization in Manufacturing Grid System
,”
IEEE Trans. Ind. Inf.
,
4
(
4
), pp.
315
327
.
30.
Jin
,
H.
,
Yao
,
X.
, and
Chen
,
Y.
,
2017
, “
Correlation-Aware QoS Modeling and Manufacturing Cloud Service Composition
,”
J. Intell. Manuf.
,
28
(
8
), pp.
1947
1960
.
31.
Mayyas
,
A. T.
,
Qattawi
,
A.
,
Mayyas
,
A. R.
, and
Omar
,
M. A.
,
2012
, “
Life Cycle Assessment-Based Selection for a Sustainable Lightweight Body-in-White Design
,”
Energy
,
39
(
1
), pp.
412
425
.
32.
Kant
,
A.
,
2017
,
Ro-Ro Ferry Service & Its Impact on Transportation and Logistics
,
Press Information Bureau
,
New Delhi
.
33.
NITI Aayog
, and
Rocky Mountain Institute
,
2018
,
Goods on the Move: Efficiency & Sustainability in Indian Logistics
,
NITI Aayog
,
New Delhi
, pp.
1
44
. niti.gov.in/node/250
34.
Greene
,
S.
, and
Lewis
,
A.
,
2019
,
Global Logistics Emissions Council Framework for Logistics Emissions Accounting and Reporting
,
Smart Freight Centre
,
Amsterdam
. flexmail.eu/f-844a1f54174eb51e
35.
Armstrong
,
R.
,
Gao
,
S.
, and
Lei
,
L.
,
2008
, “
A Zero-Inventory Production and Distribution Problem With a Fixed Customer Sequence
,”
Ann. Oper. Res.
,
159
(
1
), pp.
395
414
.
36.
Kim
,
J. G.
,
Song
,
S.
, and
Jeong
,
B. J.
,
2020
, “
Minimising Total Tardiness for the Identical Parallel Machine Scheduling Problem With Splitting Jobs and Sequence-Dependent Setup Times
,”
Int. J. Prod. Res.
,
58
(
6
), pp.
1628
1643
.
37.
Lerch
,
C.
, and
Gotsch
,
M.
,
2015
, “
Digitalized Product-Service Systems in Manufacturing Firms: A Case Study Analysis
,”
Res. Technol. Manag.
,
58
(
5
), pp.
45
52
.
38.
Sarker
,
B. R.
, and
Diponegoro
,
A.
,
2009
, “
Optimal Production Plans and Shipment Schedules in a Supply-Chain System With Multiple Suppliers and Multiple Buyers
,”
Eur. J. Oper. Res.
,
194
(
3
), pp.
753
773
.
39.
Seok
,
H.
, and
Nof
,
S. Y.
,
2018
, “
Intelligent Information Sharing Among Manufacturers in Supply Networks: Supplier Selection Case
,”
J. Intell. Manuf.
,
29
(
5
), pp.
1097
1113
.
40.
Vincent Wang
,
X.
, and
Xu
,
X. W.
,
2013
, “
An Interoperable Solution for Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
232
247
.
41.
Yuan
,
H.
,
Bi
,
J.
, and
Zhou
,
M. C.
,
2020
, “
Energy-Efficient and QoS-Optimized Adaptive Task Scheduling and Management in Clouds
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
12
.
42.
He
,
B.
,
Li
,
F.
,
Cao
,
X.
, and
Li
,
T.
,
2020
, “
Product Sustainable Design: A Review From the Environmental, Economic, and Social Aspects
,”
J. Comput. Inf. Sci. Eng.
,
20
(
4
), pp.
1
16
.
43.
Shankar
,
P.
,
Fazelpour
,
M.
, and
Summers
,
J. D.
,
2015
, “
Comparative Study of Optimization Techniques in Sizing Mesostructures for Use in NonPneumatic Tires
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041009
.
44.
Ullrich
,
C. A.
,
2013
, “
Integrated Machine Scheduling and Vehicle Routing With Time Windows
,”
Eur. J. Oper. Res.
,
227
(
1
), pp.
152
165
.
45.
Poudel
,
L.
,
Blair
,
C.
,
McPherson
,
J.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2020
, “
A Heuristic Scaling Strategy for Multi-Robot Cooperative Three-Dimensional Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041002
.
46.
Tao
,
F.
,
Laili
,
Y.
,
Xu
,
L.
, and
Zhang
,
L.
,
2013
, “
FC-PACO-RM: A Parallel Method for Service Composition Optimal-Selection in Cloud Manufacturing System
,”
IEEE Trans. Ind. Inf.
,
9
(
4
), pp.
2023
2033
.
47.
Ameri
,
F.
, and
Dutta
,
D.
,
2008
, “
A Matchmaking Methodology for Supply Chain Deployment in Distributed Manufacturing Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
011002
.
48.
Matin
,
H. N. Z.
,
Salmasi
,
N.
, and
Shahvari
,
O.
,
2017
, “
Makespan Minimization in Flowshop Batch Processing Problem With Different Batch Compositions on Machines
,”
Int. J. Prod. Econ.
,
193
, pp.
832
844
.
49.
Wang
,
Y.
,
Zhang
,
J.
,
Assogba
,
K.
,
Liu
,
Y.
,
Xu
,
M.
, and
Wang
,
Y.
,
2018
, “
Collaboration and Transportation Resource Sharing in Multiple Centers Vehicle Routing Optimization with Delivery and Pickup
,”
Knowl. Based Syst.
,
160
, pp.
296
310
.
50.
Sun
,
Z.
,
Liu
,
Y.
, and
Tao
,
L.
,
2018
, “
Attack Localization Task Allocation in Wireless Sensor Networks Based on Multi-Objective Binary Particle Swarm Optimization
,”
J. Netw. Comput. Appl.
,
112
, pp.
29
40
.
51.
Mafarja
,
M.
,
Aljarah
,
I.
,
Heidari
,
A. A.
,
Faris
,
H.
,
Fournier-Viger
,
P.
,
Li
,
X.
, and
Mirjalili
,
S.
,
2018
, “
Binary Dragonfly Optimization for Feature Selection Using Time-Varying Transfer Functions
,”
Knowl. Based Syst.
,
161
, pp.
185
204
.
52.
Kang
,
Q.
,
Feng
,
S. W.
,
Zhou
,
M. C.
,
Ammari
,
A. C.
, and
Sedraoui
,
K.
,
2017
, “
Optimal Load Scheduling of Plug-In Hybrid Electric Vehicles via Weight-Aggregation Multi-Objective Evolutionary Algorithms
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
9
), pp.
2557
2568
.
53.
Nourbakhsh
,
A.
,
Safikhani
,
H.
, and
Derakhshan
,
S.
,
2011
, “
The Comparison of Multi-Objective Particle Swarm Optimization and NSGA II Algorithm: Applications in Centrifugal Pumps
,”
Eng. Optim.
,
43
(
10
), pp.
1095
1113
.
54.
Bechikh
,
S.
,
Chaabani
,
A.
, and
Said
,
L. B.
,
2015
, “
An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization
,”
IEEE Trans. Cybern.
,
45
(
10
), pp.
2051
2064
.
55.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2005
, “Scalable Test Problems for Evolutionary Multiobjective Optimization,”
Evolutionary Multiobjective Optimization
,
A.
Abraham
,
L.
Jain
, and
R.
Goldberg
, eds.,
Springer
,
London
, pp.
105
145
.
56.
Sibalija
,
V. T.
,
2019
, “
Particle Swarm Optimisation in Designing Parameters of Manufacturing Processes: A Review (2008–2018)
,”
Appl. Soft Comput.
,
84
, p.
105743
.
57.
Ding
,
Y.
,
Zhang
,
W.
,
Yu
,
L.
, and
Lu
,
K.
,
2019
, “
The Accuracy and Efficiency of GA and PSO Optimization Schemes on Estimating Reaction Kinetic Parameters of Biomass Pyrolysis
,”
Energy
,
176
, pp.
582
588
.
58.
Deb
,
K.
, and
Gupta
,
S.
,
2011
, “
Understanding Knee Points in Bicriteria Problems and Their Implications as Preferred Solution Principles
,”
Eng. Optim.
,
43
(
11
), pp.
1175
1204
.
59.
Li
,
W.
,
Zhang
,
G.
,
Zhang
,
T.
, and
Huang
,
S.
,
2020
, “
Knee Point-Guided Multiobjective Optimization Algorithm for Microgrid Dynamic Energy Management
,”
Complexity
,
2020
(
1
), pp.
1
11
.
60.
Azadeh
,
A.
,
Ravanbakhsh
,
M.
,
Rezaei-Malek
,
M.
,
Sheikhalishahi
,
M.
, and
Taheri-Moghaddam
,
A.
,
2017
, “
Unique NSGA-II and MOPSO Algorithms for Improved Dynamic Cellular Manufacturing Systems Considering Human Factors
,”
Appl. Math. Model.
,
48
, pp.
655
672
.
61.
Xue
,
D.
, and
Imaniyan
,
D.
,
2021
, “
An Integrated Framework for Optimal Design of Complex Mechanical Products
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041004
.
62.
Hu
,
Q.
,
Lim
,
A.
, and
Zhu
,
W.
,
2015
, “
The Two-Dimensional Vector Packing Problem With Piecewise Linear Cost Function
,”
Omega
,
50
, pp.
43
53
.
63.
Onoyama
,
T.
,
Kubota
,
S.
,
Maekawa
,
T.
, and
Komoda
,
N.
,
2008
, “
High-Speed Planning Method for Cooperative Logistics Networks Using Mixed Integer Programming Model and Dummy Load
,”
Electr. Eng. Japan
,
164
(
2
), pp.
64
70
.
64.
Linke
,
B. S.
,
2013
, “
Sustainability Indicators for Grinding Applied to Dressing Strategies
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054502
.
65.
Rosyidi
,
C. N.
,
Imamah
,
N. U. F.
, and
Jauhari
,
W. A.
,
2020
, “
An Optimization Model of Make or Buy Decision and Quality Improvement of Components Using Rebate
,”
Cogent Eng.
,
7
(
1
), p.
1767266
.
66.
Li
,
J.
,
Li
,
T.
,
Yu
,
Y.
,
Zhang
,
Z.
,
Pardalos
,
P. M.
,
Zhang
,
Y.
, and
Ma
,
Y.
,
2019
, “
Discrete Firefly Algorithm with Compound Neighborhoods for Asymmetric Multi-Depot Vehicle Routing Problem in the Maintenance of Farm Machinery
,”
Appl. Soft Comput.
,
81
, p.
105460
.
67.
Li
,
H.
,
Zhang
,
L.
,
Lv
,
T.
, and
Chang
,
X.
,
2016
, “
The Two-Echelon Time-Constrained Vehicle Routing Problem in Linehaul-Delivery Systems
,”
Transp. Res. Part B Methodol.
,
94
, pp.
169
188
.
68.
Cho
,
H.
,
Lee
,
S.
, and
Park
,
J.
,
2014
, “
Time Estimation Method for Manual Assembly Using MODAPTS Technique in the Product Design Stage
,”
Int. J. Prod. Res.
,
52
(
12
), pp.
3595
3613
.
69.
Soleimani
,
H.
,
Ghaderi
,
H.
,
Tsai
,
P. W.
,
Zarbakhshnia
,
N.
, and
Maleki
,
M.
,
2020
, “
Scheduling of Unrelated Parallel Machines Considering Sequence-Related Setup Time, Start Time-Dependent Deterioration, Position-Dependent Learning and Power Consumption Minimization
,”
J. Cleaner Prod.
,
249
, p.
119428
.
70.
He
,
L.
,
de Weerdt
,
M.
, and
Yorke-Smith
,
N.
,
2020
, “
Time/Sequence-Dependent Scheduling: The Design and Evaluation of a General Purpose Tabu-Based Adaptive Large Neighbourhood Search Algorithm
,”
J. Intell. Manuf.
,
31
(
4
), pp.
1051
1078
.
You do not currently have access to this content.