Abstract

Methodologies for failure assessment frequently rely on historical failure modes, causes, and recommendations for prevention. Meanwhile, there are growing databases of narrative-based lessons that are under-utilized due to their size. Advances in natural language processing (NLP) enable unsupervised extraction of this knowledge. We present a methodology for (1) identifying relevant information using a term frequency inverse document frequency (TF-IDF) classifier and (2) extracting knowledge for failure assessment using a hierarchical topic modeling approach, hierarchical latent Dirichlet allocation (LDA). To interpret the extracted topics, we apply an automatic topic labeling technique using pointwise mutual information (PMI) extraction. The methodology is applied to NASA’s Lessons Learned Information System (LLIS), which is publicly available. Partitioned topics enable the extraction of three aspects: cause, failure, and recommendation, while a hierarchy enables organization into a taxonomy. The methodology is generalizable to databases containing narrative-style documents, while the results from the LLIS represent a summary of themes in the dataset, expressed in a format that can be linked to early design failure analyses.

References

1.
O’Halloran
,
B.
,
Stone
,
R.
, and
Tumer
,
I.
,
2012
, “
A Failure Modes and Mechanisms Naming Taxonomy
,”
Reliability and Maintainability Symposium (RAMS)
,
Reno, NV
,
Jan. 23–26
, pp.
1
6
.
2.
Fan
,
I.-S.
,
Li
,
G.
,
Lagos-Hernandez
,
M.
,
Bermell-Garcia
,
P.
, and
Twelves
,
M.
,
2002
, “
A Rule Level Knowledge Management System for Knowledge Based Engineering Applications
,”
Proceedings of the ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 22nd Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, pp.
813
821
.
3.
Jordan
,
T.
,
Bender
,
B.
,
Herzog
,
M.
, and
Song
,
Y.-W.
,
2019
, “
A Model-Based Approach to Identify Barriers in Design Knowledge Reuse
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, Vol. 1, pp.
2427
2436
.
4.
Simon
,
S.
,
Atchison
,
S.
, and
Chudoba
,
B.
, “
Development of a Hypersonic Vehicle Configuration Compendium
,”
AIAA AVIATION 2021 FORUM
,
Virtual Event
,
Aug. 2–6
.
5.
Begoli
,
E.
, and
Horey
,
J.
,
2012
, “
Design Principles for Effective Knowledge Discovery From Big Data
,”
2012 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture
,
Helsinki, Finland
,
Aug. 20–24
, pp.
215
218
.
6.
Allahyari
,
M.
,
Pouriyeh
,
S. A.
,
Assefi
,
M.
,
Safaei
,
S.
,
Trippe
,
E. D.
,
Gutierrez
,
J. B.
, and
Kochut
,
K.
,
2017
, “
A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques
,”
KDD Bigdas
,
Halifax, Canada
,
Aug. 13–17
.
7.
Tumer
,
I.
,
Stone
,
R.
, and
Bell
,
D.
,
2003
, “
Requirements for a Failure Mode Taxonomy for Use in Conceptual Design
,”
International Conference on Engineering Design (ICED 03)
,
Stockholm, Sweden
,
Aug. 19–21
, pp.
563
564
.
8.
Van Wie
,
M.
,
Bohm
,
M.
,
Barrientos
,
F.
,
Turner
,
I.
, and
Stone
,
R.
,
2005
,
Learning From Failures: Archiving and Designing With Failure and Risk
, Technical Report NASA-TM20050157895,
National Aeronautics and Space Administration
.
9.
Hsiao
,
C.
,
Ruffino
,
M.
,
Malak
,
R.
,
Tumer
,
I. Y.
, and
Doolen
,
T.
,
2012
, “
Developing a Taxonomy of Risk-Mitigating Actions from a Legacy Database of a Large Design Organization
,”
32nd Computers and Information in Engineering Conference, Parts A and B of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, Vol. 2, pp.
497
507
.
10.
Jugulum
,
R.
, and
Frey
,
D. D.
,
2007
, “
Toward a Taxonomy of Concept Designs for Improved Robustness
,”
J. Eng. Des.
,
18
(
2
), pp.
139
156
.
11.
Sasou
,
K.
, and
Reason
,
J.
,
1999
, “
Team Errors: Definition and Taxonomy
,”
Reliab. Eng. Syst. Saf.
,
65
(
1
), pp.
1
9
.
12.
Stone
,
R.
, and
Wood
,
K.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
13.
Yu
,
H.
,
Zhang
,
G.
, and
Ran
,
Y.
,
2019
, “
A More Reasonable Definition of Failure Mode for Mechanical Systems Using Meta-action
,”
IEEE Access
,
7
, pp.
4898
4904
.
14.
Li
,
Y.
,
Wu
,
C.
,
Zhang
,
X.
,
Ran
,
Y.
, and
Zhang
,
G.
,
2021
, “
Early Failure Mechanism Research of Electromechanical Product Based on Meta-action
,”
Eng. Failure Anal.
,
122
, p.
105217
.
15.
Feng
,
X.
,
Qian
,
Y.
,
Li
,
Z.
,
Wang
,
L.
, and
Wu
,
M.
,
2018
, “
Functional Model-Driven FMEA Method and Its System Implementation
,”
2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS)
,
Shanghai, China
,
Oct. 17–19
, pp.
345
350
.
16.
Long
,
W.
,
Yanling
,
Q.
,
Yue
,
L.
,
Tengfei
,
X.
, and
Yanbin
,
L.
,
2017
, “
A FMEA Method for Electronic Devices Based on Annotating Functional Roles
,”
2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI)
,
Yangzhou, China
,
Oct. 20–22
, pp.
196
203
.
17.
O’Halloran
,
B.
, and
Van Bossuyt
,
D. L.
,
2020
, “
How Do Systems Fail?
2020 Annual Reliability and Maintainability Symposium (RAMS)
,
Palm Springs, CA
,
Jan. 27–30
, pp.
1
6
.
18.
Cheong
,
H.
,
Li
,
W.
,
Cheung
,
A.
,
Nogueira
,
A.
, and
Iorio
,
F.
,
2015
, “
Automatic Extraction of Function Knowledge From Text
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
,
Boston, MA
,
Aug. 2–5
,
p. V02AT03A013
.
19.
Cheong
,
H.
,
Li
,
W.
,
Cheung
,
A.
,
Nogueira
,
A.
, and
Iorio
,
F.
,
2017
, “
Automated Extraction of Function Knowledge From Text
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111407
.
20.
Ahmed
,
F.
,
Fuge
,
M.
, and
Gorbunov
,
L. D.
,
2016
, “
Discovering Diverse, High Quality Design Ideas From a Large Corpus
,”
28th International Conference on Design Theory and Methodology of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
p. V007T06A008
.
21.
Shi
,
F.
,
2018
, “
A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval
,” Ph.D. thesis,
Imperial College of London, Dyson School of Design Engineering
.
22.
Chiarello
,
F.
,
Melluso
,
N.
,
Bonaccorsi
,
A.
, and
Fantoni
,
G.
,
2019
, “
A Text Mining Based Map of Engineering Design: Topics and Their Trajectories Over Time
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, Vol. 1, pp.
2765
2774
.
23.
Dong
,
A.
,
Hill
,
A.
, and
Agogino
,
A.
,
2004
, “
Document Analysis As a Means for Predicting Design Team Performance
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
378
385
.
24.
Ball
,
Z.
, and
Lewis
,
K.
,
2019
, “
Predicting Multi-disciplinary Design Performance Utilizing Automated Topic Discovery
,”
31st International Conference on Design Theory and Methodology of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
7
, Paper No. V007T06A053.
25.
Gyory
,
J. T.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2020
, “
A Topic Modeling Approach to Study the Impact of Manager Interventions on Design Team Cognition
,”
32nd International Conference on Design Theory and Methodology (DTM) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
8
, Paper No. V008T08A023.
26.
Bang
,
H.
, and
Selva
,
D.
,
2016
, “
iFEED: Interactive Feature Extraction for Engineering Design
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
p. V007T06A037
.
27.
Hitomi
,
N.
,
Bang
,
H.
, and
Selva
,
D.
,
2017
, “
Extracting and Applying Knowledge With Adaptive Knowledge-Driven Optimization to Architect an Earth Observing Satellite System
,”
AIAA Infotech@Aerospace Conference.
,
Grapevine, TX
,
Jan. 9–13
.
28.
Govindarajan
,
U. H.
,
Trappey
,
A. J.
, and
Kumar
,
G.
,
2019
, “
Latent Dirichlet Allocation Modeling for CPS Patent Topic Discovery
,”
Proceedings of the 2018 International Conference on Industrial Enterprise and System Engineering (IcoIESE 2018)
,
Yogyakarta, Indonesia
,
Nov. 21–22
, Atlantis Press, pp.
31
36
.
29.
Trappey
,
A. J. C.
,
Trappey
,
C. V.
, and
Chang
,
A.-C.
,
2020
, “
Intelligent Extraction of a Knowledge Ontology From Global Patents: The Case of Smart Retailing Technology Mining
,”
Int. J. Semantic Web Inf. Syst.
,
16
(
4
), pp.
61
80
.
30.
Kim
,
G.
,
Park
,
S. S.
, and
Jang
,
D.-S.
,
2015
, “
Technology Forecasting Using Topic-Based Patent Analysis
,”
J. Sci. Ind. Res.
,
74
, pp.
265
270
.
31.
Pan
,
X.
,
Wang
,
H.
,
You
,
W.
,
Zhang
,
M.
, and
Yang
,
Y.
,
2020
, “
Assessing the Reliability of Electronic Products Using Customer Knowledge Discovery
,”
Reliab. Eng. Syst. Saf.
,
199
, p.
106925
.
32.
Sarkar
,
S.
,
Vinay
,
S.
, and
Maiti
,
J.
,
2016
, “
Text Mining Based Safety Risk Assessment and Prediction of Occupational Accidents in a Steel Plant
,”
2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT)
,
New Delhi, India
,
Mar. 11–13
, pp.
439
444
.
33.
Vijayanarayanan
,
A.
, and
Li
,
H.
,
2013
,
An Evaluation of AIRES and STATISTICA Text Mining Tools As Applied to General Aviation Accidents
, Technical Report DOT/FAA/TC-TN13/7, Federal Aviation Administration, June.
34.
Zhang
,
F.
,
Fleyeh
,
H.
,
Wang
,
X.
, and
Lu
,
M.
,
2019
, “
Construction Site Accident Analysis Using Text Mining and Natural Language Processing Techniques
,”
Autom. Construct.
,
99
, pp.
238
248
.
35.
Sexton
,
T.
, and
Brundage
,
M.
,
2019
, “
Nestor: A Tool for Natural Language Annotation of Short Texts
,”
J. Res. Nat. Inst. Stan. Technol.
,
124
,
p. 124029
.
36.
NASA
,
2020
,
NASA Public Lessons Learned Information System
, https://llis.nasa.gov/https://llis.nasa.gov/
37.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
38.
Palanisamy
,
P.
,
Yadav
,
V.
, and
Elchuri
,
H.
,
2013
, “
Serendio: Simple and Practical Lexicon Based Approach to Sentiment Analysis
,”
Second Joint Conference on Lexical and Computational Semantics (*SEM), Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013)
,
Atlanta, GA
,
June 14–15
, pp.
543
548
.
39.
Wikipedia Contributors
,
2021
,
Glossary of Engineering — Wikipedia, the Free Encyclopedia
, Accessed November 2020.
40.
Iowa State University of Science and Technology, Department of Aerospace Engineering, Design Engineering Glossary
. Accessed November 2020.
41.
Design 1st, Glossary of Product Design Terms
. Accessed November 2020.
42.
Zalaco, Guide to Mechanical Design and Engineering Terminology
. Accessed November 2020.
43.
Baccianella
,
S.
,
Esuli
,
A.
, and
Sebastiani
,
F.
,
2010
, “
Sentiwordnet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining
,”
Proceedings of LREC
,
Valletta, Malta
,
May 17–23
, pp.
2200
2204
.
44.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16
,
San Francisco, CA
,
Aug. 13–17
, pp.
785
794
.
45.
Wyner
,
A. J.
,
Olson
,
M.
,
Bleich
,
J.
, and
Mease
,
D.
,
2017
, “
Explaining the Success of Adaboost and Random Forests As Interpolating Classifiers
,”
J. Mach. Learn. Res.
,
18
(
1
), pp.
1558
1590
.
46.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
, pp.
5
32
.
47.
Oza
,
N.
,
Castle
,
J. P.
, and
Stutz
,
J.
,
2009
, “
Classification of Aeronautics System Health and Safety Documents
,”
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
,
39
(
6
), pp.
670
680
.
48.
Aninditya
,
A.
,
Hasibuan
,
M. A.
, and
Sutoyo
,
E.
,
2019
, “
Text Mining Approach Using TF-IDF and Naive Bayes for Classification of Exam Questions Based on Cognitive Level of Bloom’s Taxonomy
,”
2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS)
,
Bali, Indonesia
,
Nov. 5–7
, pp.
112
117
.
49.
Goswami
,
S.
, and
Raychaudhuri
,
D.
,
2020
, “
Identification of Disaster-Related Tweets Using Natural Language Processing
,”
In International Conference on Recent Trends in Artificial Intelligence, IOT, Smart Cities & Applications (ICAISC-2020)
,
Jharkhand, India
,
Feb. 28–29
.
50.
Honnibal
,
M.
,
Montani
,
I.
,
Van Landeghem
,
S.
, and
Boyd
,
A.
,
2020
,
spaCy: Industrial-Strength Natural Language Processing in Python
,
Version 3.3.0, Explosion
,
51.
Loper
,
E.
, and
Bird
,
S.
,
2002
, “
Nltk: The Natural Language Toolkit
,”
Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics
,
Barcelona, Spain
,
July 21–26
, pp.
63
70
.
52.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
. https://dl.acm.org/doi/10.5555/944919.944937
53.
Blei
,
D.
,
Griffiths
,
T.
,
Jordan
,
M.
, and
Tenenbaum
,
J.
,
2004
, “
Hierarchical Topic Models and the Nested Chinese Restaurant Process
,”
Adv. Neural Inf. Process. Syst.
,
16
, pp.
17
24
. https://dl.acm.org/doi/10.5555/2981345.2981348
54.
Liu
,
J. S.
,
1994
, “
The Collapsed Gibbs Sampler in Bayesian Computations With Applications to a Gene Regulation Problem
,”
J. Am. Stat. Assoc.
,
89
(
427
), pp.
958
966
.
55.
Andrade
,
S.
, and
Walsh
,
H. S.
,
2021
, “
Knowledge Discovery for Early Failure Assessment of Complex Engineered Systems Using Natural Language Processing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
,
Virtual
,
Aug. 17–19
,
p. V002T02A061
.
56.
Mei
,
Q.
,
Shen
,
X.
, and
Zhai
,
C.
,
2007
, “
Automatic Labeling of Multinomial Topic Models
,”
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’07
,
San Jose, CA
,
Aug. 12–15
, pp.
490
499
.
57.
Stone
,
R.
,
Tumer
,
I.
, and
Wie
,
M.
,
2005
, “
The Function-failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
.
58.
Uder
,
S.
,
Stone
,
R.
, and
Tumer
,
I.
,
2004
, “
Failure Analysis in Subsystem Design for Space Missions
,”
Proceedings of DETC ‘04 2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
201
217
.
59.
Röder
,
M.
,
Both
,
A.
, and
Hinneburg
,
A.
,
2015
, “
Exploring the Space of Topic Coherence Measures
,”
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15
,
Shanghai, China
,
Feb. 2–6
, pp.
399
408
.
You do not currently have access to this content.