Abstract

Bayesian optimization (BO) has become a powerful tool for solving simulation-based engineering optimization problems thanks to its ability to integrate physical and mathematical understandings, consider uncertainty, and address the exploitation–exploration dilemma. Thompson sampling (TS) is a preferred solution for BO to handle the exploitation–exploration tradeoff. While it prioritizes exploration by generating and minimizing random sample paths from probabilistic models—a fundamental ingredient of BO–TS weakly manages exploitation by gathering information about the true objective function after it obtains new observations. In this work, we improve the exploitation of TS by incorporating the ε-greedy policy, a well-established selection strategy in reinforcement learning. We first delineate two extremes of TS, namely the generic TS and the sample-average TS. The former promotes exploration, while the latter favors exploitation. We then adopt the ε-greedy policy to randomly switch between these two extremes. Small and large values of ε govern exploitation and exploration, respectively. By minimizing two benchmark functions and solving an inverse problem of a steel cantilever beam, we empirically show that ε-greedy TS equipped with an appropriate ε is more robust than its two extremes, matching or outperforming the better of the generic TS and the sample-average TS.

References

1.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,” Advances in Neural Information Processing Systems, Vol.
25
, Dec. 3–8,
Curran Associates, Inc.
,
Lake Tahoe, NV
, pp.
2951
2959
.
2.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
de Freitas
,
N.
,
2016
, “
Taking the Human out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
3.
Frazier
,
P. I.
,
2018
, “
Bayesian Optimization
,”
Recent Advances in Optimization and Modeling of Contemporary Problems
,
INFORMS TutORials in Operations Research
,
INFORMS
, pp.
255
278
.
4.
Garnett
,
R.
,
2023
,
Bayesian Optimization
,
Cambridge University Press
,
Cambridge, UK
.
5.
Do
,
B.
, and
Zhang
,
R.
,
2023
, “Multi-fidelity Bayesian Optimization in Engineering Design,” arXiv, https://arxiv.org/abs/2311.13050.
6.
Zhang
,
R.
, and
Alemazkoor
,
N.
,
2024
, “
Multi-fidelity Machine Learning for Uncertainty Quantification and Optimization
,”
J. Machine Learn. Model. Comput.
,
5
(
4
), pp.
77
94
.
7.
Karandikar
,
J.
,
Chaudhuri
,
A.
,
No
,
T.
,
Smith
,
S.
, and
Schmitz
,
T.
,
2022
, “
Bayesian Optimization for Inverse Calibration of Expensive Computer Models: A Case Study for Johnson-Cook Model in Machining
,”
Manuf. Lett.
,
32
, pp.
32
38
.
8.
Kuhn
,
J.
,
Spitz
,
J.
,
Sonnweber-Ribic
,
P.
,
Schneider
,
M.
, and
Böhlke
,
T.
,
2022
, “
Identifying Material Parameters in Crystal Plasticity by Bayesian Optimization
,”
Optim. Eng.
,
23
(
3
), pp.
1489
1523
.
9.
Tran
,
A.
,
Tran
,
M.
, and
Wang
,
Y.
,
2019
, “
Constrained Mixed-Integer Gaussian Mixture Bayesian Optimization and Its Applications in Designing Fractal and Auxetic Metamaterials
,”
Struct. Multidiscipl. Optim.
,
59
(
6
), pp.
2131
2154
.
10.
Zhang
,
Y.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2020
, “
Bayesian Optimization for Materials Design With Mixed Quantitative and Qualitative Variables
,”
Sci. Rep.
,
10
(
1
), p.
4924
.
11.
Zheng
,
H.
,
Xie
,
F.
,
Ji
,
T.
,
Zhu
,
Z.
, and
Zheng
,
Y.
,
2020
, “
Multifidelity Kinematic Parameter Optimization of a Flapping Airfoil
,”
Phys. Rev. E
,
101
(
1
), p.
013107
.
12.
Greenhill
,
S.
,
Rana
,
S.
,
Gupta
,
S.
,
Vellanki
,
P.
, and
Venkatesh
,
S.
,
2020
, “
Bayesian Optimization for Adaptive Experimental Design: A Review
,”
IEEE Access
,
8
, pp.
13937
13948
.
13.
Roussel
,
R.
,
Hanuka
,
A.
, and
Edelen
,
A.
,
2021
, “
Multiobjective Bayesian Optimization for Online Accelerator Tuning
,”
Phys. Rev. Accel. Beams
,
24
(
6
), p.
062801
.
14.
Hennig
,
P.
,
Osborne
,
M. A.
, and
Kersting
,
H. P.
,
2022
,
Probabilistic Numerics: Computation as Machine Learning
,
Cambridge University Press
,
Cambridge, UK
.
15.
Villemonteix
,
J.
,
Vazquez
,
E.
, and
Walter
,
E.
,
2009
, “
An Informational Approach to the Global Optimization of Expensive-to-Evaluate Functions
,”
J. Global Optim.
,
44
(
4
), pp.
509
534
.
16.
Hennig
,
P.
, and
Schuler
,
C. J.
,
2012
, “
Entropy Search for Information-Efficient Global Optimization
,”
J. Mach. Learn. Res.
,
13
(
6
), pp.
1809
1837
. http://jmlr.org/papers/v13/hennig12a.html
17.
Hernández-Lobato
,
J. M.
,
Hoffman
,
M. W.
, and
Ghahramani
,
Z.
,
2014
, “
Predictive Entropy Search for Efficient Global Optimization of Black-Box Functions
,” Advances in Neural Information Processing Systems, Vol.
27
, Dec. 8–13,
Curran Associates, Inc.
,
Montreal, Canada
, pp.
918
926
.
18.
Wang
,
Z.
, and
Jegelka
,
S.
,
2017
, “
Max-Value Entropy Search for Efficient Bayesian Optimization
,” Proceedings of the 34th International Conference on Machine Learning, Vol.
70
, Aug. 6–11,
PMLR
,
Sydney
, pp.
3627
3635
.
19.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
20.
Sóbester
,
A.
,
Leary
,
S. J.
, and
Keane
,
A. J.
,
2005
, “
On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
,”
J. Global Optim.
,
33
(
1
), pp.
31
59
.
21.
Srinivas
,
N.
,
Krause
,
A.
,
Kakade
,
S. M.
, and
Seeger
,
M.
,
2010
, “
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
,” Proceedings of the 27th International Conference on Machine Learning, Vol.
13
, June 21–24,
Omnipress
,
Haifa
, pp.
1015
1022
.
22.
Frazier
,
P. I.
,
Powell
,
W. B.
, and
Dayanik
,
S.
,
2008
, “
A Knowledge-Gradient Policy for Sequential Information Collection
,”
SIAM J. Control Optim.
,
47
(
5
), pp.
2410
2439
.
23.
Blanchard
,
A.
, and
Sapsis
,
T.
,
2021
, “
Bayesian Optimization With Output-Weighted Optimal Sampling
,”
J. Comput. Phys.
,
425
, p.
109901
.
24.
Thompson
,
W. R.
,
1933
, “
On the Likelihood That One Unknown Probability Exceeds Another in View of the Evidence of Two Samples
,”
Biometrika
,
25
(
3/4
), pp.
285
294
.
25.
Chapelle
,
O.
, and
Li
,
L.
,
2011
, “
An Empirical Evaluation of Thompson Sampling
,” Advances in Neural Information Processing Systems, Vol.
24
, Dec. 12–17,
Curran Associates, Inc.
,
Granada, Spain
, pp.
2249
2257
.
26.
Russo
,
D. J.
, and
Van Roy
,
B.
,
2014
, “
Learning to Optimize Via Posterior Sampling
,”
Math. Oper. Res.
,
39
(
4
), pp.
1221
1243
.
27.
Russo
,
D. J.
,
Roy
,
B. V.
,
Kazerouni
,
A.
,
Osband
,
I.
, and
Wen
,
Z.
,
2018
, “
A Tutorial on Thompson Sampling
,”
Found. Trends® Mach. Learn.
,
11
(
1
), pp.
1
96
.
28.
Kandasamy
,
K.
,
Krishnamurthy
,
A.
,
Schneider
,
J.
, and
Poczos
,
B.
,
2018
, “
Parallelised Bayesian Optimisation Via Thompson Sampling
,” Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, Vol.
84
, Apr. 9–11,
PMLR
,
Playa Blanca, Spain
, pp.
133
142
.
29.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
The MIT Press
,
Cambridge, MA
.
30.
De Ath
,
G.
,
Everson
,
R. M.
,
Rahat
,
A. A. M.
, and
Fieldsend
,
J. E.
,
2021
, “
Greed is Good: Exploration and Exploitation Trade-Offs in Bayesian Optimisation
,”
ACM Trans. Evolutionary Learn. Optim.
,
1
(
1
), pp.
1
22
.
31.
Jin
,
T.
,
Yang
,
X.
,
Xiao
,
X.
, and
Xu
,
P.
,
2023
, “
Thompson Sampling With Less Exploration is Fast and Optimal
,” Proceedings of the 40th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol.
202
, July 23–29,
PMLR
,
Honolulu, HI
, pp.
15239
15261
.
32.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
33.
Bishop
,
C.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
Berkeley, CA
.
34.
MacKay
,
D. J.
,
2003
,
Information Theory, Inference and Learning Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
35.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “DACE-A Matlab Kriging Toolbox,” Lyngby, Denmark, Technical Report IMMTR-2002-12.
36.
Rasmussen
,
C. E.
, and
Nickisch
,
H.
,
2010
, “
Gaussian Processes for Machine Learning (GPML) Toolbox
,”
J. Mach. Learn. Res.
,
11
(
100
), pp.
3011
3015
. http://jmlr.org/papers/v11/rasmussen10a.html
37.
Vanhatalo
,
J.
,
Riihimäki
,
J.
,
Hartikainen
,
J.
,
Jylänki
,
P.
,
Tolvanen
,
V.
, and
Vehtari
,
A.
,
2013
, “
GPstuff: Bayesian Modeling With Gaussian Processes
,”
J. Mach. Learn. Res.
,
14
(
1
), pp.
1175
1179
. https://jmlr.csail.mit.edu/papers/v14/vanhatalo13a.html.
38.
Neumann
,
M.
,
Huang
,
S.
,
Marthaler
,
D. E.
, and
Kersting
,
K.
,
2015
, “
pyGPs – A Python Library for Gaussian Process Regression and Classification
,”
J. Mach. Learn. Res.
,
16
(
80
), pp.
2611
2616
. http://jmlr.org/papers/v16/neumann15a.html.
39.
de G. Matthews
,
A. G.
,
van der Wilk
,
M.
,
Nickson
,
T.
,
Fujii
,
K.
,
Boukouvalas
,
A.
,
León-Villagrá
,
P.
,
Ghahramani
,
Z.
, and
Hensman
,
J.
,
2017
, “
GPflow: A Gaussian Process Library Using TensorFlow
,”
J. Mach. Learn. Res.
,
18
(
40
), pp.
1
6
. http://jmlr.org/papers/v18/16-537.html.
40.
Riutort-Mayol
,
G.
,
Bürkner
,
P.-C.
,
Andersen
,
M. R.
,
Solin
,
A.
, and
Vehtari
,
A.
,
2022
, “
Practical Hilbert Space Approximate Bayesian Gaussian Processes for Probabilistic Programming
,”
Stat. Comput.
,
33
(
1
), p.
17
.
41.
Rahimi
,
A.
, and
Recht
,
B.
,
2007
, “
Random Features for Large-Scale Kernel Machines
,” Advances in Neural Information Processing Systems, Vol.
20
, Dec. 3–6,
Curran Associates, Inc.
,
Vancouver
, pp.
1177
1184
.
42.
Wendland
,
H.
,
2004
,
Scattered Data Approximation
, Vol.
17
,
Cambridge University Press
,
Cambridge, UK
.
43.
Wilson
,
J.
,
Borovitskiy
,
V.
,
Terenin
,
A.
,
Mostowsky
,
P.
, and
Deisenroth
,
M.
,
2020
, “
Efficiently Sampling Functions From Gaussian Process Posteriors
,” Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol.
119
, July 13–18,
PMLR
,
Virtual, Online
, pp.
10292
10302
.
44.
Balandat
,
M.
,
Karrer
,
B.
,
Jiang
,
D.
,
Daulton
,
S.
,
Letham
,
B.
,
Wilson
,
A. G.
, and
Bakshy
,
E.
,
2020
, “
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
,” Advances in Neural Information Processing Systems, Vol.
33
, Dec. 6–12,
Curran Associates, Inc.
,
Virtual, Online
, pp.
21524
21538
.
45.
Adebiyi
,
T.
,
Do
,
B.
, and
Zhang
,
R.
,
2024
, “Optimizing Posterior Samples for Bayesian Optimization Via Rootfinding,” arXiv.
46.
Do
,
B.
, and
Ohsaki
,
M.
,
2022
, “
Proximal-Exploration Multi-objective Bayesian Optimization for Inverse Identification of Cyclic Constitutive Law of Structural Steels
,”
Struct. Multidiscipl. Optim.
,
65
(
7
), p.
199
.
47.
Surjanovic
,
S.
, and
Bingham
,
D.
,
2013
, “Virtual Library of Simulation Experiments: Test Functions and Datasets.”
48.
Finkel
,
D. E.
, and
Kelley
,
C. T.
,
2006
, “
Additive Scaling and the DIRECT Algorithm
,”
J. Global Optim.
,
36
(
4
), pp.
597
608
.
49.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
West Sussex, UK
.
50.
Yamada
,
S.
, and
Jiao
,
Y.
,
2016
, “
A Concise Hysteretic Model of Structural Steel Considering the Bauschinger Effect
,”
Int. J. Steel Struct.
,
16
(
3
), pp.
671
683
.
51.
Ohsaki
,
M.
,
Miyamura
,
T.
, and
Zhang
,
J. Y.
,
2016
, “
A Piecewise Linear Isotropic-Kinematic Hardening Model With Semi-Implicit Rules for Cyclic Loading and Its Parameter Identification
,”
Comput. Model. Eng. Sci.
,
111
(
4
), pp.
303
333
.
52.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1994
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
53.
Voce
,
E.
,
1948
, “
The Relationship Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Metals
,
74
, pp.
537
562
.
54.
Chaboche
,
J. L.
, and
Rousselier
,
G.
,
1983
, “
On the Plastic and Viscoplastic Constitutive Equations–Part I: Rules Developed With Internal Variable Concept
,”
ASME J. Pressure Vessel. Technol.
,
105
(
2
), pp.
153
158
.
55.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “A Mathematical Representation of the Multiaxial Bauschinger Effect,” Report RD/B/N731.
56.
Nayebi
,
A.
,
Munteanu
,
A.
, and
Poloczek
,
M.
,
2019
, “
A Framework for Bayesian Optimization in Embedded Subspaces
,” Proceedings of the 36th International Conference on Machine Learning, Vol.
97
, June 9–15,
PMLR
,
Long Beach, CA
, pp.
4752
4761
.
57.
Zhang
,
R.
,
Mak
,
S.
, and
Dunson
,
D.
,
2022
, “
Gaussian Process Subspace Prediction for Model Reduction
,”
SIAM J. Sci. Comput.
,
44
(
3
), pp.
A1428
A1449
.
58.
Eriksson
,
D.
,
Pearce
,
M.
,
Gardner
,
J.
,
Turner
,
R. D.
, and
Poloczek
,
M.
,
2019
, “
Scalable Global Optimization Via Local Bayesian Optimization
,” Advances in Neural Information Processing Systems, Vol.
32
, Dec. 8–14,
Curran Associates, Inc.
,
Vancouver
, pp.
5496
5507
.
59.
Mazumdar
,
E.
,
Pacchiano
,
A.
,
Ma
,
Y.
,
Jordan
,
M.
, and
Bartlett
,
P.
,
2020
, “
On Approximate Thompson Sampling With Langevin Algorithms
,” Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol.
119
, July 13–18,
PMLR
,
Virtual, Online
, pp.
6797
6807
.
60.
Zheng
,
H.
,
Deng
,
W.
,
Moya
,
C.
, and
Lin
,
G.
,
2024
, “
Accelerating Approximate Thompson Sampling With Underdamped Langevin Monte Carlo
,” Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, Vol.
238
, May 2–4,
PMLR
,
Palau de Congressos, Spain
, pp.
2611
2619
.
You do not currently have access to this content.