Abstract

Accurate estimation of remaining useful life (RUL) becomes a crucial task when bearing operates under dynamic working conditions. The environmental noise, different operating conditions, and multiple fault modes result in the existence of considerable distribution and feature shifts between different domains. To address these issues, a novel framework TSBiLSTM is proposed that utilizes 1DCNN, SBiLSTM, and attention mechanism (AM) synergically to extract highly abstract feature representation, and domain adaptation is realized using the MK-MMD (multi-kernel maximum mean discrepancy) metric and domain confusion layer. One-dimensional CNN (1DCNN) and stacked bidirectional LSTM (SBiLSTM) are utilized to take advantage of spatiotemporal features with attention mechanism (AM) to selectively process the influential degradation information. MK-MMD provides effective kernel selection along with a domain confusion layer to effectively extract domain-invariant features. Both experimentation and comparison studies are conducted to verify the effectiveness and feasibility of the proposed TSBiLSTM model. The generalized performance is demonstrated using IEEE PHM data sets based on root mean squared error, mean absolute error, absolute percent mean error, and percentage mean error. The promising RUL prediction results validate the superiority and usability of the proposed TSBiLSTM model as a promising prognostic tool for dynamic operating conditions.

References

1.
Craig
,
M.
,
Harvey
,
T. J.
,
Wood
,
R. J. K.
,
Masuda
,
K.
,
Kawabata
,
M.
, and
Powrie
,
H. E. G.
,
2009
, “
Advanced Condition Monitoring of Tapered Roller Bearings, Part 1
,”
Tribol. Int.
,
42
(
11–12
), pp.
1846
1856
.
2.
Sikorska
,
J. Z.
,
Hodkiewicz
,
M.
, and
Ma
,
L.
,
2011
, “
Prognostic Modelling Options for Remaining Useful Life Estimation by Industry
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1803
1836
.
3.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Prognostic Analysis of High-Speed Cylindrical Roller Bearing Using Weibull Distribution and k-Nearest Neighbor
,”
ASME J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
,
5
(
1
), p. 011005.
4.
Lall
,
P.
,
Harsha
,
M.
,
Goebel
,
K.
, and
Suhling
,
J.
Level of Damage and Remaining Useful Life in Leadfree Electronics Subjected to Multiple Thermo-Mechanical Environments, PHM-2012.08.125
.
5.
Lall
,
P.
,
M Harsha
,
H. R.
,
Pandher
,
R.
, and
Suhling
,
J.
,
2010
, “
Thermo-Mechanical Reliability of SAC Lead-Free Alloys
,”
Proceedings of ITHERM 2010
,
Las Vegas, NV
,
June 2–5
, pp.
242
249
.
6.
Rohani Bastami
,
A.
,
Aasi
,
A.
, and
Arghand
,
H. A.
,
2019
, “
Estimation of Remaining Useful Life of Rolling Element Bearings Using Wavelet Packet Decomposition and Artificial Neural Network
,”
Iranian J. Sci. Technol., Trans. Electr. Eng.
,
43
(
1
), pp.
233
245
.
7.
Huang
,
H. Z.
,
Wang
,
H. K.
,
Li
,
Y. F.
,
Zhang
,
L.
, and
Liu
,
Z.
,
2015
, “
Support Vector Machine Based Estimation of Remaining Useful Life: Current Research Status and Future Trends
,”
J. Mech. Sci. Technol.
,
29
(
1
), pp.
151
163
.
8.
Su
,
Y.
,
Tao
,
F.
,
Jin
,
J.
,
Wang
,
T.
,
Wang
,
Q.
, and
Wang
,
L.
,
2020
, “
Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021007
.
9.
Mubarak Mohammed
,
A.
,
Gebremariam
,
M. A.
,
Azhari
,
A.
,
Hagos
,
F.
, and
Kassa
,
F.
,
2023
, “
Machine Health Management System Using Moving Average Feature With Bidirectional Long-Short Term Memory (LSTM)
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031002
.
10.
Mao
,
W.
,
He
,
J.
, and
Zuo
,
M. J.
,
2019
, “
Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning
,”
IEEE Trans. Instrum. Meas.
,
69
(
4
), pp.
1594
1608
.
11.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Prognostics Analysis of Rolling Bearing Based on Bi-Directional LSTM and Attention Mechanism
,”
J. Failure Anal. Prevent.
,
22
(
2
), pp.
704
723
.
12.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2023
, “
Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural Network
,”
ASME J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
,
6
(
2
), p.
021006
.
13.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Degradation Pattern of High Speed Roller Bearings Using a Data-Driven Deep Learning Approach
,”
J. Signal Process. Syst.
, pp.
1
12
.
14.
Lall
,
P.
,
Harsha
,
M.
,
Mirza
,
K.
,
Goebel
,
K.
, and
Suhling
,
J.
,
2013
, “
Damage Pre-Cursor Based Assessment of Impact of High Temperature Storage on Reliability of Leadfree Electronics
,”
ECTC
,
San Diego, CA
,
June 18–20
, pp.
202
218
.
15.
Lall
,
P.
,
Harsha
,
M.
, and
Goebe
,
K.
,
2012
, “
Method for Determination of Accrued Damage and Remaining Life During Field-Usage in Lead-Free Electronics
,”
SMTAI
,
49
, pp.
1059
1079
.
16.
Wang
,
S.
,
Chen
,
J.
,
Wang
,
H.
, and
Zhang
,
D.
,
2019
, “
Degradation Evaluation of Slewing Bearing Using HMM and Improved GRU
,”
Measurement
,
146
, pp.
385
395
.
17.
Xiang
,
S.
,
Qin
,
Y.
,
Luo
,
J.
,
Pu
,
H.
, and
Tang
,
B.
,
2021
, “
Multicellular LSTM-Based Deep Learning Model for Aero-Engine Remaining Useful Life Prediction
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
107927
.
18.
Li
,
J.
,
Li
,
X.
, and
He
,
D.
,
2019
, “
A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction
,”
IEEE Access
,
7
, pp.
75464
75475
.
19.
Yao
,
D.
,
Li
,
B.
,
Liu
,
H.
,
Yang
,
J.
, and
Jia
,
L.
,
2021
, “
Remaining Useful Life Prediction of Roller Bearings Based on Improved 1D-CNN and Simple Recurrent Unit
,”
Measurement
,
175
, p.
109166
.
20.
Lee
,
H.
,
Puranik
,
T. G.
, and
Mavris
,
D. N.
,
2021
, “
Deep Spatio-Temporal Neural Networks for Risk Prediction and Decision Support in Aviation Operations
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041013
.
21.
Sateesh Babu
,
G.
,
Zhao
,
P.
, and
Li
,
X. L.
,
2016, April
,
Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life. In International Conference on Database Systems for Advanced Applications
,
Springer
,
Cham
, pp.
214
228
.
22.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Rolling Bearing Prognostic Analysis for Domain Adaptation Under Different Operating Conditions
,”
Eng. Failure Anal.
,
139
, p.
106414
.
23.
Wen
,
L.
,
Gao
,
L.
, and
Li
,
X.
,
2017
, “
A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
49
(
1
), pp.
136
144
.
24.
Cheng
,
C.
,
Zhou
,
B.
,
Ma
,
G.
,
Wu
,
D.
, and
Yuan
,
Y.
,
2020
, “
Wasserstein Distance Based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis With Unlabeled or Insufficient Labeled Data
,”
Neurocomputing
,
409
, pp.
35
45
.
25.
Long
,
M.
,
Wang
,
J.
,
Ding
,
G.
,
Sun
,
J.
, and
Yu
,
P. S.
,
2013
, “
Transfer Feature Learning With Joint Distribution Adaptation
,”
Proceedings of the IEEE International Conference on Computer Vision
,
2200
2207
.
26.
Li
,
R.
,
Li
,
S.
,
Xu
,
K.
,
Lu
,
J.
,
Teng
,
G.
, and
Du
,
J.
,
2021
, “
Deep Domain Adaptation With Adversarial Idea and Coral Alignment for Transfer Fault Diagnosis of Rolling Bearing
,”
Meas. Sci. Technol.
,
32
(
9
), p.
094009
.
27.
Xu
,
W.
,
Wan
,
Y.
,
Zuo
,
T. Y.
, and
Sha
,
X. M.
,
2020
, “
Transfer Learning Based Data Feature Transfer for Fault Diagnosis
,”
IEEE Access
,
8
, pp.
76120
76129
.
28.
Teng
,
L.
,
Fu
,
Z.
,
Ma
,
Q.
,
Yao
,
Y.
,
Zhang
,
B.
,
Zhu
,
K.
, and
Li
,
P.
,
2020
, “
Interactive Echocardiography Translation Using few-Shot GAN Transfer Learning
,”
Comput. Math. Methods Med.
,
2020
, pp.
1
9
.
29.
Tzeng
,
E.
,
Hoffman
,
J.
,
Saenko
,
K.
, and
Darrell
,
T.
,
2017
, “
Adversarial Discriminative Domain Adaptation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
7167
7176
.
30.
Ganin
,
Y.
,
Ustinova
,
E.
,
Ajakan
,
H.
,
Germain
,
P.
,
Larochelle
,
H.
,
Laviolette
,
F.
, and
Lempitsky
,
V.
,
2016
, “
Domain-Adversarial Training of Neural Networks
,”
J. Mach. Learn. Res.
,
17
(
1
), pp.
2096
2030
.
31.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
An Attention-Based Stacked BiLSTM Framework for Predicting Remaining Useful Life of Rolling Bearings
,”
Appl. Soft Comput.
,
131
, p.
109765
.
32.
Schuster
,
M.
, and
Paliwal
,
K. K.
,
1997
, “
Bidirectional Recurrent Neural Networks
,”
IEEE Trans. Signal Process.
,
45
(
11
), pp.
2673
2681
.
33.
Chen
,
T.
,
Xu
,
R.
,
He
,
Y.
, and
Wang
,
X.
,
2017
, “
Improving Sentiment Analysis via Sentence Type Classification Using BiLSTM-CRF and CNN
,”
Expert Syst. Appl.
,
72
, pp.
221
230
.
34.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
.
35.
Luong
,
M. T.
,
Pham
,
H.
, and
Manning
,
C. D.
,
2015
,
Effective Approaches to Attention-Based Neural Machine Translation
. arXiv preprint arXiv:1508.04025.
36.
Gretton
,
A.
,
Borgwardt
,
K. M.
,
Rasch
,
M. J.
,
Schölkopf
,
B.
, and
Smola
,
A.
,
2012
, “
A Kernel Two-Sample Test
,”
J. Mach. Learn. Res.
,
13
(
1
), pp.
723
773
.
37.
Gretton
,
A.
,
Sejdinovic
,
D.
,
Strathmann
,
H.
,
Balakrishnan
,
S.
,
Pontil
,
M.
,
Fukumizu
,
K.
, and
Sriperumbudur
,
B. K.
,
2012
, “
Optimal Kernel Choice for Large-Scale two-Sample Tests
,”
Adv. Neural Inform. Process. Syst.
,
25
.
38.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
,
Adam: A Method for Stochastic Optimization
. arXiv preprint arXiv:1412.6980.
39.
Li
,
L.
, and
Talwalkar
,
A.
,
2020, August
, “
Random Search and Reproducibility for Neural Architecture Search
,”
Uncertainty in Artificial Intelligence
,
367
377
.
PMLR
.
40.
Wang
,
C. M.
, and
Huang
,
Y. F.
,
2009
, “
Evolutionary-Based Feature Selection Approaches With New Criteria for Data Mining: A Case Study of Credit Approval Data
,”
Expert Syst. Appl.
,
36
(
3
), pp.
5900
5908
.
41.
Nectoux
,
P.
,
Gouriveau
,
R.
,
Medjaher
,
K.
,
Ramasso
,
E.
,
Chebel-Morello
,
B.
,
Zerhouni
,
N.
, and
Varnier
,
C.
,
2012, June
, “
PRONOSTIA: An Experimental Platform for Bearings Accelerated Degradation Tests
,”
IEEE International Conference on Prognostics and Health Management, PHM'12
,
1
8
. IEEE Catalog Number: CPF12PHM-CDR.
42.
Li
,
X.
,
Hu
,
Y.
,
Li
,
M.
, and
Zheng
,
J.
,
2020
, “
Fault Diagnostics Between Different Type of Components: A Transfer Learning Approach
,”
Appl. Soft Comput.
,
86
, p.
105950
.
43.
Chen
,
C.
,
Li
,
Z.
,
Yang
,
J.
, and
Liang
,
B.
,
2017, May
, “
A Cross Domain Feature Extraction Method Based on Transfer Component Analysis for Rolling Bearing Fault Diagnosis
,”
Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC)
, IEEE, pp.
5622
5626
.
44.
Cheng
,
H.
,
Kong
,
X.
,
Chen
,
G.
,
Wang
,
Q.
, and
Wang
,
R.
,
2021
, “
Transferable Convolutional Neural Network Based Remaining Useful Life Prediction of Bearing Under Multiple Failure Behaviors
,”
Measurement
,
168
, p.
108286
.
You do not currently have access to this content.