Abstract

This article presents a self-supervised learning approach for a robot to learn spatially varying process parameter models for contact-based finishing tasks. In many finishing tasks, a part has spatially varying stiffness. Some regions of the part enable the robot to efficiently execute the task. On the other hand, some other regions on the part may require the robot to move cautiously in order to prevent damage and ensure safety. Compared to the constant process parameter models, spatially varying process parameter models are more complex and challenging to learn. Our self-supervised learning approach consists of utilizing an initial parameter space exploration method, surrogate modeling, selection of region sequencing policy, and development of process parameter selection policy. We showed that by carefully selecting and optimizing learning components, this approach enables a robot to efficiently learn spatially varying process parameter models for a given contact-based finishing task. We demonstrated the effectiveness of our approach through computational simulations and physical experiments with a robotic sanding case study. Our work shows that the learning approach that has been optimized based on task characteristics significantly outperforms an unoptimized learning approach based on the overall task completion time.

References

1.
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Learning to Improve Performance During Non-Repetitive Tasks Performed by Robots
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 2.
2.
Edwards
,
M.
,
1984
, “
Robots in Industry: An Overview
,”
Appl. Ergon.
,
15
(
1
), pp.
45
53
.
3.
Norberto Pires
,
J.
,
Loureiro
,
A.
,
Godinho
,
T.
,
Ferreira
,
P.
,
Fernando
,
B.
, and
Morgado
,
J.
,
2003
, “
Welding Robots
,”
IEEE Robot. Autom. Mag.
,
10
(
2
), pp.
45
55
.
4.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing (WAAM)
,”
Rob. Computer-Integrated Manuf.
,
31
, pp.
101
110
.
5.
Ding
,
D.
,
Shen
,
C.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Larkin
,
N.
, and
van Duin
,
S.
,
2016
, “
Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System From CAD to Finished Part
,”
Computer-Aided Design
,
73
, pp.
66
75
.
6.
Bonaccorso
,
F.
,
Cantelli
,
L.
, and
Muscato
,
G.
,
2011
, “
An Arc Welding Robot Control for a Shaped Metal Deposition Plant: Modular Software Interface and Sensors
,”
IEEE. Trans. Ind. Electron.
,
58
(
8
), pp.
3126
3132
.
7.
Wang
,
X.
,
Xue
,
L.
,
Yan
,
Y.
, and
Gu
,
X.
,
2017
, “
Welding Robot Collision-Free Path Optimization
,”
Appl. Sci.
,
7
(
2
), p.
89
.
8.
Kabir
,
A. M.
,
Shembekar
,
A. V.
,
Malhan
,
R. K.
,
Aggarwal
,
R. S.
,
Langsfeld
,
J. D.
,
Shah
,
B.
, and
Gupta
,
S. K.
,
2018
, “
Robotic Finishing of Interior Regions of Geometrically Complex Parts
,”
ASME 13th International Manufacturing Science and Engineering Conference (MSEC)
,
College Station, TX
,
June 18–22
.
9.
Nagata
,
F.
,
Kusumoto
,
Y.
,
Fujimoto
,
Y.
, and
Watanabe
,
K.
,
2007
, “
Robotic Sanding System for New Designed Furniture With Free-Formed Surface
,”
Rob. Computer-Integrated Manuf.
,
23
(
4
), pp.
371
379
.
10.
Takeuchi
,
Y.
,
Asakawa
,
N.
, and
Ge
,
D.
,
1993
, “
Automation of Polishing Work by an Industrial Robot: System of Polishing Robot
,”
JSME Int. J. Ser. C, Dynamics, Control, Robotics, Design Manuf.
,
36
(
4
), pp.
556
561
.
11.
Márquez
,
J.
,
Pérez
,
J.
,
Rıos
,
J.
, and
Vizá
,
A.
,
2005
, “
Process Modeling for Robotic Polishing
,”
J. Mater. Process. Technol.
,
159
(
1
), pp.
69
82
.
12.
Ke
,
X.
,
Yu
,
Y.
,
Li
,
K.
,
Wang
,
T.
,
Zhong
,
B.
,
Wang
,
Z.
,
Kong
,
L.
,
Guo
,
J.
,
Huang
,
L.
,
Idir
,
M.
,
Liu
,
C.
, and
Wang
,
C.
,
2023
, “
Review on Robot-Assisted Polishing: Status and Future Trends
,”
Rob. Computer-Integrated Manuf.
,
80
, p.
102482
.
13.
Chen
,
F.
,
Zhao
,
H.
,
Li
,
D.
,
Chen
,
L.
,
Tan
,
C.
, and
Ding
,
H.
,
2019
, “
Contact Force Control and Vibration Suppression in Robotic Polishing With a Smart End Effector
,”
Rob. Computer-Integrated Manuf.
,
57
, pp.
391
403
.
14.
Chen
,
H.
,
Sheng
,
W.
,
Xi
,
N.
,
Song
,
M.
, and
Chen
,
Y.
,
2002
, “
Automated Robot Trajectory Planning for Spray Painting of Free-Form Surfaces in Automotive Manufacturing
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Washington, DC
,
May 11–15
, Vol. 1, pp.
450
455
.
15.
Chen
,
H.
,
Fuhlbrigge
,
T.
, and
Li
,
X.
,
2008
, “
Automated Industrial Robot Path Planning for Spray Painting Process: A Review
,”
IEEE International Conference on Automation Science and Engineering (CASE)
,
Arlington, VA
,
Aug. 23–26
, pp.
522
527
.
16.
Chidhambara
,
K. V.
,
Shankar
,
B. L.
, and
Vijaykumar
,
2018
, “
Optimization of Robotic Spray Painting Process Parameters Using Taguchi Method
,”
IOP Conference Series: Materials Science and Engineering
,
Bengaluru, India
,
August
.
17.
Zhang
,
B.
,
Wu
,
J.
,
Wang
,
L.
, and
Yu
,
Z.
,
2020
, “
Accurate Dynamic Modeling and Control Parameters Design of an Industrial Hybrid Spray-Painting Robot
,”
Rob. Computer-Integrated Manuf.
,
63
, p.
101923
.
18.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Peralta
,
M.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Performing Sheet Lamination-Based Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
278
289
.
19.
Shembekar
,
A. V.
,
Yoon
,
Y. J.
,
Kanyuck
,
A.
, and
Gupta
,
S. K.
,
2018
, “
Trajectory Planning for Conformal 3D Printing Using Non-Planar Layers
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, QC, Canada
,
Aug. 26–29
.
20.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Malhan
,
R. K.
,
Shah
,
B.
,
Shembekar
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Multi-resolution Additive Manufacturing
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
.
21.
Rao
,
R. V.
, and
Kalyankar
,
V. D.
,
2012
, “
Parameter Optimization of Machining Processes Using a New Optimization Algorithm
,”
Mater. Manuf. Processes.
,
27
(
9
), pp.
978
985
.
22.
Vosniakos
,
G.-C.
, and
Matsas
,
E.
,
2010
, “
Improving Feasibility of Robotic Milling Through Robot Placement Optimisation
,”
Rob. Computer-Integrated Manuf.
,
26
(
5
), pp.
517
525
.
23.
Guo
,
Y.
,
Dong
,
H.
, and
Ke
,
Y.
,
2015
, “
Stiffness-Oriented Posture Optimization in Robotic Machining Applications
,”
Rob. Computer-Integrated Manuf.
,
35
, pp.
69
76
.
24.
Perumaal
,
S. S.
, and
Jawahar
,
N.
,
2013
, “
Automated Trajectory Planner of Industrial Robot for Pick-and-Place Task
,”
Int. J. Adv. Robotic Syst.
,
10
(
2
), p.
100
.
25.
Tipary
,
B.
, and
Erdős
,
G.
,
2021
, “
Generic Development Methodology for Flexible Robotic Pick-and-Place Workcells Based on Digital Twin
,”
Rob. Computer-Integrated Manuf.
,
71
, p.
102140
.
26.
Bozma
,
H. I.
, and
Kalalıoğlu
,
M.
,
2012
, “
Multirobot Coordination in Pick-and-Place Tasks on a Moving Conveyor
,”
Rob. Computer-Integrated Manuf.
,
28
(
4
), pp.
530
538
.
27.
Kabir
,
A. M.
,
Langsfeld
,
J. D.
,
Zhuang
,
C.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2016
, “
Automated Learning of Operation Parameters for Robotic Cleaning by Mechanical Scrubbing
,”
ASME 11th International Manufacturing Science and Engineering Conference (MSEC)
,
Vol. 2, Blacksburg, VA
,
June 27–July 1
.
28.
Langsfeld
,
J. D.
,
Kabir
,
A. M.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2018
, “
Integration of Planning and Deformation Model Estimation for Robotic Cleaning of Elastically Deformable Objects
,”
IEEE Rob. Automation Lett.
,
3
(
1
), pp.
352
359
.
29.
Chen
,
I. M.
, and
Burdick
,
J. W.
,
1995
, “
Determining Task Optimal Modular Robot Assembly Configurations
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Nagoya, Japan
,
May 21–27
, Vol. 1, pp.
132
137
.
30.
Do
,
H. M.
,
Park
,
C.
, and
Kyung
,
J. H.
,
2012
, “
Dual Arm Robot for Packaging and Assembling of IT Products
,”
IEEE International Conference on Automation Science and Engineering (CASE)
,
Seoul, South Korea
,
Aug. 20–24
, pp.
1067
1070
.
31.
Malhan
,
R. K.
,
Shahapurkar
,
Y.
,
Kabir
,
A. M.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2018
, “
Integrating Impedance Control and Learning Based Search Scheme for Robotic Assemblies Under Uncertainty
,”
ASME 13th International Manufacturing Science and Engineering Conference (MSEC)
,
College Station, TX
,
June 18–22
.
32.
Duque
,
D. A.
,
Prieto
,
F. A.
, and
Hoyos
,
J. G.
,
2019
, “
Trajectory Generation for Robotic Assembly Operations Using Learning by Demonstration
,”
Rob. Computer-Integrated Manuf.
,
57
, pp.
292
302
.
33.
Hong
,
Q.
,
Chen
,
H.
,
Zhang
,
B.
, and
Fuhlbrigge
,
T.
,
2018
, “
Assembly Control Parameter Learning for Complex Robotic Assembly Processes
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Kuala Lumpur, Malaysia
,
Dec. 12–15
, pp.
2526
2530
.
34.
Cheng
,
H.
, and
Chen
,
H.
,
2014
, “
Online Parameter Optimization in Robotic Force Controlled Assembly Processes
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
3465
3470
.
35.
Dong
,
H.
,
Cong
,
M.
,
Zhang
,
Y.
,
Liu
,
Y.
, and
Chen
,
H.
,
2017
, “
Real Time Welding Parameter Prediction for Desired Character Performance
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
1794
1799
.
36.
Kabir
,
A. M.
,
Langsfeld
,
J. D.
,
Zhuang
,
C.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2017
, “
A Systematic Approach for Minimizing Physical Experiments to Identify Optimal Trajectory Parameters for Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
351
357
.
37.
Kabir
,
A. M.
,
Langsfeld
,
J. D.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2018
, “
Identifying Optimal Trajectory Parameters in Robotic Finishing Operations Using Minimum Number of Physical Experiments
,”
Integrated Computer-Aided Eng.
,
25
(
2
), pp.
111
135
.
38.
Langsfeld
,
J. D.
,
Kabir
,
A. M.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2016
, “
Robotic Bimanual Cleaning of Deformable Objects With Online Learning of Part and Tool Models
,”
IEEE International Conference on Automation Science and Engineering (CASE)
,
Fort Worth, TX
,
Aug. 21–25
, pp.
626
632
.
39.
Wu
,
B.
,
Qu
,
D.
, and
Xu
,
F.
,
2015
, “
Improving Efficiency With Orthogonal Exploration for Online Robotic Assembly Parameter Optimization
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Zhuhai, China
,
Dec. 6–9
, pp.
958
963
.
40.
Srensen
,
L. C.
,
Andersen
,
R. S.
,
Schou
,
C.
, and
Kraft
,
D.
,
2018
, “
Automatic Parameter Learning for Easy Instruction of Industrial Collaborative Robots
,”
IEEE International Conference on Industrial Technology (ICIT)
,
Lyon, France
,
Feb. 20–22
, pp.
87
92
.
41.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2016
, “
Mathematical Modeling and Fdm Process Parameters Optimization Using Response Surface Methodology Based on Q-Optimal Design
,”
Appl. Math. Model.
,
40
(
23
), pp.
10052
10073
.
42.
Alafaghani
,
A.
, and
Oattawi
,
A.
,
2018
, “
Investigating the Effect of Fused Deposition Modeling Processing Parameters Using Taguchi Design of Experiment Method
,”
J. Manuf. Process.
,
36
, pp.
164
174
.
43.
Dey
,
A.
, and
Yodo
,
N.
,
2019
, “
A Systematic Survey of Fdm Process Parameter Optimization and Their Influence on Part Characteristics
,”
J. Manuf. Mater.Process.
,
3
(
3
), p.
64
.
44.
Rakicevic
,
N.
, and
Kormushev
,
P.
,
2019
, “
Active Learning Via Informed Search in Movement Parameter Space for Efficient Robot Task Learning and Transfer
,”
Auton. Robot
,
43
(
8
), pp.
1917
1935
.
45.
Wilson
,
A. D.
,
Schultz
,
J. A.
,
Ansari
,
A. R.
, and
Murphey
,
T. D.
,
2017
, “
Dynamic Task Execution Using Active Parameter Identification With the Baxter Research Robot
,”
IEEE Trans. Automation Sci. Eng.
,
14
(
1
), pp.
391
397
.
46.
Kroemer
,
O.
, and
Peters
,
J.
,
2011
, “
Active Exploration for Robot Parameter Selection in Episodic Reinforcement Learning
,”
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)
,
Paris, France
,
Apr. 11–15
, pp.
25
31
.
You do not currently have access to this content.